ECCHacks:
a gentle introduction
to elliptic-curve cryptography

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

Cryptography

ecchacks.cr.yp.to

Public-key signatures:

e.g., RSA, DSA, ECDSA.
Some uses: signed OS updates,
SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked 1IPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

troduction
urve cryptography

ernstein
of lllinois at Chicago &
- Universiteit Eindhoven

S

D

Universiteit Eindhoven

Cryptography

Cr.yp.to

Public-key signatures:
e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

Why ECC?

“Index calc

to break or

Long histol

including n

1975,
1977,
1982,
1990,
1994,
2006,
2013,

CFR

linea
quac
num
func
med
9 _

(FFS is no

rraphy

Chicago &
Eindhoven

Eindhoven

Cryptography

Public-key signatures:
e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

Why ECC?

“Index calculus’: faste:

to break original DH ar

Long history,

including many major i

1975,
1977,
1982,
1990,
1994,
2006,
2013,

CFRAC:

linear sieve (LS);
quadratic sieve (!
number-field siev
function-field siey

medium-prime FI
z9 —x FFS “cryj

(FFS is not relevant to

Cryptography

Public-key signatures:
e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we
to break original DH and RSA.

Long history,

including many major improvement:
1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);
1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;

2013, z9 — z FFS “cryptopocalypse
(FFS is not relevant to RSA.)

Cryptography Why ECC?

Public-key signatures: “Index calculus™: fastest method we know
e.g., RSA, DSA, ECDSA. to break original DH and RSA.

Some uses: signed OS updates, Long history,

SSL certificates, e-passports. . . .
including many major improvements:

Public-key encryption: 1975, CFRAC;

e.g., RSA, DH, ECDH. 1977, linear sieve (LS);

Some uses: SSL key exchange, 1982, quadratic sieve (QS);
locked 1IPhone mail download. 1990, number-field sieve (NFS);

1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;
2013, z9 — z FFS “cryptopocalypse”.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption. (FFS is not relevant to RSA.)

hy

signatures:
DSA, ECDSA.

- signed OS updates,

cates, e-passports.

encryption:
DH, ECDH.
- SSL key exchange,
one mail download.

encryption:
Salsa20.

 disk encryption,
ncryption.

Why ECC?

“Index calculus”: fastest method we know
to break original DH and RSA.

Long history,

including many major improvements:

1975,
1977,
1982,
1990,
1994,
2006,
2013,

CFRAC;

linear sieve (LS);

quadratic sieve (QS);
number-field sieve (NFS);
function-field sieve (FFS);
medium-prime FFS/NFS;

z9 — x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many
~ 100 scie

Approxima
for breakin
CFRAC: 2’
LS: D]
QS: 2]
NFS: Z

Why ECC? Also many smaller impt

¥ " ~ 100 scientific papers
Index calculus”’: fastest method we know Pap

A. to break original DH and RSA. Approximate costs of tl

updates, for breaking RSA-1024,

Long history,

ports. - clud . | CFRAC: 2120 2170
INCluding many major improvements: LS. 5110 5160
1975, CFRAC, ' ' |
. . QS: 2100 2150,
1977, linear sieve (LS); '

. NFS: 280 2ll2
change, 1982, quadratic sieve (QS); ’
mload. 1990, number-field sieve (NFS);

1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;
ion 2013, z9 — z FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Why ECC? Also many smaller improvements:

¥ " ~ 100 scientific papers.
Index calculus”’: fastest method we know Pap

to break original DH and RSA. Approximate costs of these algorithi
for breaking RSA-1024, RSA-2048:
CFRAC: 2120 2170,
LS- 2110 2160_
QS: 2100 2150_
NFS: 280 2112

Long history,

including many major improvements:
1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);
1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;
2013, z9 — z FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Why ECC? Also many smaller improvements:

¥ " ~ 100 scientific papers.
Index calculus’: fastest method we know Pap

to break original DH and RSA. Approximate costs of these algorithms
for breaking RSA-1024, RSA-2048:
CFRAC: 2120 2170,

LS- 2110 2160_

QS: 2100 2150_

NFS: 280 2112

Long history,

including many major improvements:
1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);
1994, function-field sieve (FFS);
2006, medium-prime FFS/NFS;

2013, 279 — =z FFS “cryptopocalypse” .
(FFS is not relevant to RSA.)

Why ECC?

“Index calculus”: fastest method we know
to break original DH and RSA.

Long history,

including many major improvements:

1975,
1977,
1982,
1990,
1994,
2006,
2013,

CFRAC;

linear sieve (LS);

quadratic sieve (QS);
number-field sieve (NFS);
function-field sieve (FFS);
medium-prime FFS/NFS;

z9 — x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:
~ 100 scientific papers.

Approximate costs of these algorithms
for breaking RSA-1024, RSA-2048:
CFRAC: 2120 2170,

LS: 110 5160

QS: 2100 5150

NFS: 280 212

1985 Miller
“Use of elliptic curves in cryptography”:
"It is extremely unlikely that an

‘Index calculus’ attack on the elliptic
curve method will ever be able to work.”

ulus” : fastest method we know
iginal DH and RSA.

'y,

1any major improvements:
AC;

r sieve (LS);

ratic sieve (QS);

ber-field sieve (NFS);
tion-field sieve (FFS);
um-prime FFS/NFS;

x FFS “cryptopocalypse” .

t relevant to RSA.)

Also many smaller improvements:
~ 100 scientific papers.

Approximate costs of these algorithms
for breaking RSA-1024, RSA-2048:
CFRAC: 2120 2170,

LS: 2110 5160

QS: 2100 5150

NFS: 280 212

1985 Miller

“Use of elliptic curves in cryptography”:

"It is extremely unlikely that an
‘Index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

This i1s the

Warning:
This is not
“Elliptic cL

st method we know
d RSA.

mprovements:

S);

e (NFS);
/e (FFS);
-S/NFS;

rtopocalypse™ .

RSA.)

Also many smaller improvements:
~ 100 scientific papers.

Approximate costs of these algorithms
for breaking RSA-1024, RSA-2048:
CFRAC: 2120 2170,

LS: 110 5160

QS: 2100 5150

NFS: 280 212

1985 Miller

“Use of elliptic curves in cryptography”:
"It is extremely unlikely that an

‘Index calculus’ attack on the elliptic
curve method will ever be able to work.”

The clock

>

This is the curve z° +

Warning:
This is not an elliptic ¢
“Elliptic curve” # “elli

> know

Also many smaller improvements:
~ 100 scientific papers.

Approximate costs of these algorithms
for breaking RSA-1024, RSA-2048:
CFRAC: 2120 2170,

LS: 110 2160

QS: 2100 5150

NFS: 280 212

1985 Miller

“Use of elliptic curves in cryptography”:

"It is extremely unlikely that an
‘Index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

AW

This is the curve z2 + y2 = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

Also many smaller improvements: The clock

~ 100 scientific papers.

Approximate costs of these algorithms
for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170,
LS. 21102160
QS: 2100 5150 — 2
NFS: 280 212

1985 Miller

“Use of elliptic curves in cryptography”:
“It is extremely unlikely that an Warning:

‘index calculus’ attack on the elliptic This is not an elliptic curve.
curve method will ever be able to work.” "Elliptic curve™ # "ellipse.”

This is the curve z2 + y2 = 1.

smaller improvements:
ntific papers.

te costs of these algorithms

s RSA-1024, RSA-2048:
20 2170_

10 2160_
00 2150_
!80 2112_

,
ptic curves in cryptography”:
mely unlikely that an

ulus’ attack on the elliptic

od will ever be able to work.”

The clock

AW

This is the curve z2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples ¢

‘ovements:

1ese algorithms
RSA-2048:

n cryptography":
 that an

on the elliptic

be able to work."

The clock

AW

This is the curve z2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples of points on -

NS

hy':

ork.”

The clock

AW

This is the curve z2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples of points on this curve:

The clock

AW

This is the curve z2 + y% = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples of points on this curve:

The clock Examples of points on this curve:

(0,1) = “12:00".

This is the curve z2 + y% = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

The clock

AW

This is the curve z2 + y% = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".
(0,—1) = "“6:00".

The clock

AW

This is the curve z2 + y% = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:

(0,1) = “12:00".
(0, —1) = “6:00".
(1,0) = “3:00".

The clock

AW

This is the curve z2 + y% = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:

(0,1) = “12:00".
(0,—1) = “6:00".
(1,0) = “3:00".

(—1,0) = “9:00".

The clock

AW

This is the curve z2 + y% = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:

(0,1) = “12:00".
(0,—1) = “6:00".
(1,0) = “3:00".

(—1,0) = “9:00".

(v/3/4,1/2) =

The clock

AW

This is the curve z2 + y% = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".

(0,—1) = "“6:00".

(1,0) = “3:00".

(—1,0) = "9:00".

(v/3/4,1/2) = "2:00".

The clock

AW

This is the curve z2 + y% = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".

(0,—1) = "“6:00".

(1,0) = “3:00".

(—1,0) = "9:00".

(v/3/4,1/2) = "2:00".
(1/2,—+/3/4) =

The clock

AW

This is the curve z2 + y% = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".

(0,—1) = "“6:00".

(1,0) = “3:00".

(—1,0) = "9:00".
(v/3/4,1/2) = "2:00".
(1/2, —/3/4) = "5:00".
(~1/2,—+/3]4) =

The clock

AW

This is the curve z2 + y% = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".

(0,—1) = "“6:00".

(1,0) = “3:00".

(—1,0) = "9:00".

(v/3/4,1/2) = "2:00".

(1/2, —/3/4) = "5:00".
(=1/2,—+/3/4) = “7:00".

The clock

AW

This is the curve z2 + y% = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” # “ellipse.”

Examples of points on this curve:
(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “0:00".
(v/3/4,1/2) = "2:00".
(1/2, —/3/4) = "5:00".
(=1/2,—+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).

The clock Examples of points on this curve:

(0,1) = “12:00".
Y (0, —=1) = “6:00".
\ (1,0) = “3:00".
(—-1,0) = “9:00".
\ (1/3/4,1/2) = “2:00".
> T (1/2, —/3/4) = "5:00".

(=1/2,—+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".

This is the curve z2 + y% = 1. (3/5,4/5). (—3/5,4/5).

_ (3/5,—4/5). (—=3/5,—4/5).
termngt (4/5.3/5). (~4/5.3/5)
This is not an elliptic curve. (4/5,—3/5). (—4/5, —3/5).

Elliptic curve”™ # “ellipse. Many more.

AW

curve 2 + y2 = 1.

~an elliptic curve.
irve” # “ellipse.”

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = "2:00".
(1/2, —+/3/4) = "5:00".
(—1/2, —+/3/4) = “7:00".
(v1/2,4/1/2) = "1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (—=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5,—3/5).

Many more.

Addition o

22+ y° =

T =snhQa,

Uurve.

)se.”

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “9:00".
(1/3/4,1/2) = “2:00".
(1/2, —+/3/4) = "5:00".
(—1/2, —+/3/4) = “7:00".
(v/1/2,4/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (—=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5,—3/5).

Many more.

Addition on the clock:

Y

A
NEl

aj

-

2 + y2 = 1, parametri

T =slna, Yy = Cos.

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “9:00".
(1/3/4,1/2) = “2:00".
(1/2, —+/3/4) = "5:00".
(—1/2, —+/3/4) = “7:00".
(v/1/2,/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (—=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5,—3/5).

Many more.

Addition on the clock:

Y
} neutral = (0,1)
o P = (z1.
P2 — (:l
> T
P = (z

22 + y2 = 1, parametrized by
T =slna, Yy = Cos.

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “9:00".
(v/3/4,1/2) = "2:00".
(1/2, —/3/4) = "5:00".
(—=1/2,—+/3/4) = “7:00".
(v/1/2,4/1/2) = "1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (—=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5,—3/5).

Many more.

Addition on the clock:

Y
} neutral = (0,1)
o P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

22 + y2 = 1, parametrized by

T =slna, Yy = Cos.

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “9:00".
(1/3/4,1/2) = “2:00".
(1/2, —/3/4) = "5:00".
(—=1/2,—+/3/4) = “7:00".
(v/1/2,/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (—=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5,—3/5).

Many more.

Addition on the clock:

Y
} neutral = (0,1)
- P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

22 + y2 = 1, parametrized by
Tz =sina, y = cosa. Recall
(sin(a1 + a2), cos(a1 + ar)) =

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “9:00".
(1/3/4,1/2) = “2:00".
(1/2, —/3/4) = "5:00".
(—=1/2,—+/3/4) = “7:00".
(v/1/2,/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (—=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5,—3/5).

Many more.

Addition on the clock:

Y
} neutral = (0,1)
- P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

2 + y2 = 1, parametrized by
Tz =sina, y = cosa. Recall
(sin(a1 + a2), cos(a1 + ar)) =
(sin a1 cosas + cosaj sin as,

Examples of points on this curve:

(0,1) = “12:00".

(0, —1) = “6:00".

(1,0) = “3:00".

(—1,0) = “9:00".
(1/3/4,1/2) = “2:00".
(1/2, —/3/4) = "5:00".
(—=1/2,—+/3/4) = “7:00".
(v/1/2,/1/2) = “1:30".
(3/5,4/5). (—3/5,4/5).
(3/5,—4/5). (—=3/5,—4/5).
(4/5,3/5). (—4/5,3/5).
(4/5,—3/5). (—4/5,—3/5).

Many more.

Addition on the clock:

Y
} neutral = (0,1)
- P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

2 + y2 = 1, parametrized by
Tz =sina, y = cosa. Recall
(sin(a1 + a2), cos(a1 + ar)) =
(sin a1 cosas + cosaj sin as,
COS a1 COSap — sinag sinan).

f points on this curve:

2:00".

“6:00".

:00".

“9:00".

2) = "2:00".

/4) = “5:00".

/3/4) = "7:00" .

1/2) = “1:30".
(—3/5,4/5).

). (—3/5,—4/5).
(—4/5,3/5).

). (—4/5,—-3/5).

a
- u

Addition on the clock:

Y

} neutral = (0,1)
- P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

22 + y2 = 1, parametrized by

Tz =sina, y = cosa. Recall
(sin(a1 + a2), cos(a1 + ar)) =

(sin a1 cos as + cos
COS (x1 COS o — SIn

a1 Sin oo,
aisinag).

Clock addi

Use Cartes
Addition fc
for the cloc
sum of (1

(z1y2 + ¥1

this curve:

0" .
"

4/5).
).
3/5).

Addition on the clock:

Y
} neutral = (0,1)
- P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

2 + y2 = 1, parametrized by
Tz =sina, y = cosa. Recall
(sin(a1 + a2), cos(a1 + ar)) =
(sin a1 cosas + cosaj sin as,
cosQajcosap —sinajisinas).

Clock addition without

>

NEl

-

Use Cartesian coordina
Addition formula

for the clock z2 + y? =
sum of (z1,y1) and (z:

(Z1Yy2 + Y122, Y1Y2 —

Addition on the clock:

Y
} neutral = (0,1)
- P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

2 + y2 = 1, parametrized by
Tz =sina, y = cosa. Recall
(sin(a1 + a2), cos(a; + ar)) =
(sin a1 cosas + cosaj sin as,
cosQajcosap —sinajisinas).

Clock addition without sin, cos:

Yy
} neutral = (0,1)
P = (z1,
P2 — (:l
>~ T
P3 — (CB

Use Cartesian coordinates for additi
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is
(192 + ¥1%2, Y192 — T1%2).

Addition on the clock:

Y

} neutral = (0,1)
- P = (z1,v1)
P> = (z2,y2)
> X
Pz = (23, y3)

22 + y2 = 1, parametrized by

Tz =sina, y = cosa. Recall
(sin(a1 + a2), cos(a1 + ar)) =
(sin a1 cosas + cosaj sin as,

COS (x1 COS o — SIn

aisinan).

Clock addition without sin, cos:

} neutral = (0,1)

P = (z1,v1)

P> = (z2,y2)
> X

P = (z3,93)

Use Cartesian coordinates for addition.

Addition formula

for the clock z2 + y2 = 1:
sum of (z1,y1) and (x2,y2) is
(z1Y2 + Y122, Y192 — T122).

n the clock:
Y
A
neutral = (0, 1)
- P = (z1,91)
P> = (z2,y2)
>~ T
Pz = (23, y3)

1, parametrized by
y = cosa. Recall
o), cos(ay + as)) =
oo + cos aq sin ay,
ap —sinajisinay).

Clock addition without sin, cos:

} neutral = (0,1)

P = (z1,v1)
P> = (z2,y2)

Use Cartesian coordinates for addition.

Addition formula

for the clock z2 + y2 = 1:
sum of (z1,y1) and (x2,y2) is
(z1Y2 + Y122, Y192 — T122).

itral = (0, 1)

P = (z1,91)
3 P> = (z2,92)
j P3 = (z3,y3)

zed by

8

Recall
-ap)) =
5N oo,
Sinap).

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

Use Cartesian coordinates for addition.

Addition formula

for the clock z2 + y2 = 1:
sum of (z1,y1) and (x2,y2) is
(z1Y2 + Y122, Y192 — T122).

Examples of clock addr
“2:00" + “5:00"

(+v/3/4,1/2) +(1/2,
(=172, ~+/3/4) = *
“5:00" + "9:00"

(1/2,—/3/4) + (-
(1/3/4,1/2) = “2:0C

(gg) - (ig 275>

N

Y1)
2, Y2)

3, Y3)

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x>, y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + "“5:00"

(v/3/4,1/2) + (1/2, —+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "2:00".

(gg) N (32’275)

N

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

(gg) - @:'275)

No

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "2:00".

(gg) - @:'275)

; 3 4\ (117 —44
5'5) \125" 125)"

No

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

34\ (24 T
(E’E) - (25’25)'

3 117 —44
(' (125' 125)'

5
3 336 —527
5 625" 625)

No

3
4

;)
;)

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x2,y2) is

(z1y2 + Y122, Y1Y2 — T1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

3 4\ (24 7
(E’E) - (25’25)'

3 4\ (117 —44
3(5’5) h (125’ 125)'
4(§ ﬂ) _ (336 —527)

5'5 625" 625)

(1,91) +(0,1) =

No

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x2,y2) is

(z1y2 + Y122, Y1Y2 — T1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

3 4\ (24 7
(E’E) - (25’25)'

3 4\ (117 —44
3(5’5) h (125’ 125)'
4(§ ﬂ) _ (336 —527)

5'5 625" 625)

(1,91) +(0,1) = (21, 91).

No

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples
“2:00" +

“5:00" +

No

o
(4
(4

(z1,91) -

of clock addition:
“5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".

"9:00"

(1/2,—+/3/4) +(=1,0)
(1/3/4,1/2) = “2:00".

(24 7

B (25’ 25)'

- (117 —44
B (125’ 125)'
- (336 —527
B (625' 625)

-(0,1) = (21, 91).

(z1,91) -

- (—z1,91) =

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x2,y2) is

(z1y2 + Y122, Y1Y2 — T1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

2(35) - (5 =)

5' 25’25)
3 4 117 —44

3(5’5) (125’ 125)'

3 4 336 —527
4(5’5 (625' 625)
) +
(z1,91) + (—=1,91) = (0, 1).

(z1,91) +(0,1) = (21, y1)-

tion without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
P3 = (23, y3)

lan coordinates for addition.
rmula

k 2 4+ y2 = 1.

,y1) and (z2,92) is

T2, Y1Y2 — T1L2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

34\ _ (24 7Y
£o-les)
3(5’ 5) B (125’ 125)'
;‘(? 2:)(0 (12)3?(632572 -
(fBi Zi) + (—’161, Y1) i ?01 i)-

N

Clocks ove

C|OCk(F7)
Here F7 =

with arithn
eg. 2-5=

Sin, COS:

itral = (0, 1)

P = (z1,91)
3 P> = (z2,92)
j P3 = (z3,y3)

tes for addition.

- 1:
), Y2) IS
1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + “9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "2:00".

34\ _ (24 7Y
£o-les)
3(5’ 5) B (125’ 125)'
;‘(? 2:)(0 (12)3?(632572 -
(fBi Zi) + (—’161, Y1) i ?01 i)-

No

Clocks over finite fields

Clock(F7) = {(z,y) €
Here F7 = {0,1,2, 3,4,
={0,1,2,3, —
with arithmetic modulo
eg. 2-5=3and 3/2:

Y1)
2, Y2)

3, Y3)

on.

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".

“5:00" + "9:00"
= (1/2,—+/3/4) + (-1, 0)
= (1/3/4,1/2) = "2:00" .

(5:5) = (35728)

(33) - (=)
(- (22)
(z1,91) +(0,1) = (21, 91).
(z1,91) + (—z1,91) = (0,1).

Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg 2-5=3and 3/2=5in Fy.

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "“2:00".

(55)- (G5)
(3:5) - ()
(33)- (o)
(1,91) +(0,1) = (21, y1)-
(z1,91) + (—z1,91) = (0, 1).

No

Clocks over finite fields

C|OCk(F7)

= {(a:,y) c F; xF7: :1:2+y2:1}.

Here F7 = {0,1,2,3,4,5,6}
~{0,1,2,3,-3, -2, 1}

with arithmetic modulo 7.
eg. 2-5=3and 3/2=5inF7.

f clock addition:
5:00"

1/2) +(1/2,—+/3/4)
- J/33) = "7:00".
9:00"

/3/4) + (—1,0)
1/2) = “2:00".

24 7
- (25’ 25)'
117 —44
- (125’ 125)'
336 —527
- (625' 625)
(0,1) = (z1,91).
(—z1,91) = (0,1).

Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22+y°=1}.

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg 2-5=3and 3/2=5in Fy.

>>>

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for x
for

11

tion:

—/3/4)
7:00".

Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22+y°=1}.

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg 2-5=3and 3/2=5in Fy.

>>> for x in range (7]

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for y in range
if (x*x+y*y)
print (x,y.

Clocks over finite fields >>> for x in range(7):

for y in range(7):

if (xxx+y*xy) % 7 ==

° ' ° print (x,y)
¢ .« o o
o o (O’ 1)
¢ (0, 6)
o o (1, O)
(2, 2)
Clock(F7) = {(z,v) € F7 x F7 : z2+y°=1}. (2, 5)
Here F; ={0,1,2,3,4,5,6} (5, 2)
~{0,1,2,3,—3, -2, —1} (5, 5)
with arithmetic modulo 7. (6, 0)

eg. 2-5=3and 3/2=5in F7. >>>

Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22+y°=1}.

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg. 2-5=3and 3/2=5in Fy.

>>> for x in range(7):

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for y in range(7):
if (xxx+y*y) % 7 ==
print (x,y)

r finite fields

— {(a:,y) e F; x F7: :1:2+y2:1}.
{0,1,2,3,4,5,6}
{0,1,2,3,-3,-2,—1}

1etic modulo 7.

-3 and 3/2=5 in F7.

>>>

(0,
(0,

(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):
for y in range(7):
if (xxx+y*xy) % 7 ==
print (x,y)

>>> class

def

S¢

def

re

__Te

>>> print
2

>>> print
6

>>> print
0

>>> print
3

F- x F7: :1:2+y2:1}.
5,6}
3,—2,—1}

=5 1In F7.

>>>

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):

for y in range(7):

if (xxx+y*xy) % 7 ==

print (x,y)

>>> class F7:
def __init__(se
self.int = x
def __str__(sel
return str(se
__repr__ = __st
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3

+y?

1}.

>>>

(0,
(0,

(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):
for y in range(7):
if (xxx+y*xy) % 7 ==
print (x,y)

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3

>>>

(0,
(0,

(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):
for y in range(7):
if (x*xx+y*y) % 7 ==
print (x,y)

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3

in range(7):

y in range(7):
(x*xx+y*y) % 7 ==

print (x,y)

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):

return str(self.int)

__repr = str

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)
3

>>> F7.__c¢
lamt

>>>

>>> print

True

>>> print

True

>>> print

True

>>> print

False

>>> print

False

>>> print

False

7)
o/o7==

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3

>>> F7.__eq__ = \

lambda a,b: a.]

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F

F

Fi

Fi

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3

>>> F7.__eq__ =\

lambda a,b: a.int ==
>>>
>>> print F7(7) == F7(0)
True
>>> print F7(10) == F7(3)
True
>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)
False

>>> print F7(0) == F7(2)
False

>>> print F7(0) == F7(3)

False

b.1int

>>> class F7: >>> F7.__eq__ =\
def __init__(self,x): - lambda a,b: a.int == b.int
self.int = x % 7 >>>
def __str__(self): >>> print F7(7) == F7(0)
return str(self.int) True
__repr__ = __str__ >>> print F7(10) == F7(3)
True
>>> print F7(2) >>> print F7(-3) == F7(4)
2 True
>>> print F7(6) >>> print F7(0) == F7(1)
6 False
>>> print F7(7) >>> print F7(0) == F7(2)
0 False
>>> print F7(10) >>> print F7(0) == F7(3)
3 False

F7:
__init__(self,x):
1f.int = x 4 7
__str__(self):
sturn str(self.int)
pr__ = Str

F7(2)

F7(6)

F7(7)

F7(10)

>>> F7.__eq__ = \

lambda a,b: a.int == b.int

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

1 amt

print

print

print

1 ,x)
b T
£):
1f.int)

>>> F7.__eq__ = \

lambda a,b: a.int == b.int

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \
lambda a,b: F7

F7.__sub__ =\
lambda a,b: F7

F7.__mul__ = \

lambda a,b: F7

print F7(2) + F7¢

print F7(2) - F7(

print F7(2) * F7(

>>> F7.__eq__ = \

lambda a,b: a.int == b.int

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7) ==

F7(10) =

F7(-3)

F7(0) ==

F7(0) ==

F7(0) ==

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.]
F7.__sub__ =\

lambda a,b: F7(a.int - b.]
F7.__mul__ = \

lambda a,b: F7(a.int * b.]

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

>>> F7.__eq__ = \

lambda a,b: a.int == b.1int
>>>
>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True
>>> print F7(-3) == F7(4)
True
>>> print F7(0) == F7(1)
False
>>> print F7(0) == F7(2)
False
>>> print F7(0) == F7(3)

False

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)
print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

q__ =

\

da a,b: a.int ==

F7(7)

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

b.int

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

Larger exal

p = 10000(
class Fp:

def clock:
xl,yl =
X2,y2 =
x3 = x1>»
y3 =yl

return 3

nt ==

(0)

7(3)

7 (4)

(1)

(2)

(3)

b.int

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

Larger example: Clock(

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3

>>> F7.__add
lambda a,b: F7(a.int + b.int)
>>> F7.__sub__ =\
lambda a,b: F7(a.int - b.int)
>>> F7.__mul__ = \

_ \ Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

lambda a,b: F7(a.int * b.int)
def clockadd(P1,P2):

>>>
xl,yl = P1
>>> print F7(2) + F7(5)
x2,y2 = P2
0
x3 = x1*y2+yl*xx2
>>> print F7(2) - F7(5)
y3 = yl*xy2-x1*x2
4
return x3,y3
>>> print F7(2) * F7(5)
3

>>>

1dd

\

yda a,b: F7(a.int + b.int)

sub

\

yda a,b: F7(a.int - b.int)

1l

\

da a,b: F7(a.int * b.int)

F7(2) + F7(5)

F7(2) - F7(5)

F7(2) * F7(5)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylky2-x1*xx2

return x3,y3

>>> P = (1
>>> P2 = «
>>> print
(4000, 7)
>>> P3 = «
>>> print
(15000, 2¢
>>> P4 = <
>>> Pb = ¢
>>> P6 = «
>>> print
(780000,
>>> print
(780000,

>>>

‘a.int + b.int)

‘a.int - b.int)

‘a.int * b.int)

5)

5)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylky2-x1*xx2

return x3,y3

>>> P = (Fp(1000),Fp!
>>> P2 = clockadd(P,F
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2.
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,
>>> P5 = clockadd (P4,
>>> P6 = clockadd(P5,
>>> print P6

(780000, 1351)

>>> print clockadd (P:

(780000, 1351)
>>>

nt)

nt)

nt)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

mple: Clock(F1000003).

)3

dd (P1,P2):
P1

P2
y2+y1*xx2
Ky 2-x1*x2
(3,y3

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def sc¢

>>> n = 01
>>> gcalaz

(947472,
>>>

Can you fig

F1000003)-

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def scalarmult(n,
if n == 0: rett
if n == 1: rett
Q = scalarmult
Q = clockadd(Q.
if n’% 2: Q = ¢

return Q

>>> n = oursixdigitse
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),I
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,C

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

‘p(1000) ,Fp(2))
lockadd (P,P)
P2

-lockadd (P2,P)
P3

5)

>lockadd (P3,P)
>lockadd (P4,P)
>lockadd (P5,P)
P6

1351)

clockadd (P3,P3)
1351)

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryp

The “Clocl

Standardiz
and base |

Alice choo
Alice comg

Bob choos
Bob compi

Alice comg
Bob compi
They use t
to encrypt

2))

3,P3)

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie—Hellr

Standardize a large prir
and base point (z,y)

Alice chooses big secre
Alice computes her puk

Bob chooses big secret
Bob computes his publi

Alice computes a(b(z, 1
Bob computes b(a(z,y
They use this shared se
to encrypt with AES-G

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.
Alice computes her public key a(z, !

Bob chooses big secret b.
Bob computes his public key 6(z, y)

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return (

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.
Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key b(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

alarmult(n,P):

1 == 0: return (Fp(0),Fp(1))
1 == 1: return P
scalarmult(n//2,P)
clockadd(Q,Q)

1 % 2: Q = clockadd(P,Q)

1irn @
Irsixdigitsecret

mult(n,P)
736284)

rure out our secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key 6(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s se

Alice's |

a:

{Alice
sharec
ab(

P):
irn (Fp(0) ,Fp(1))

1irn P
n//2,P)

Q)
lockadd (P, Q)

cret

secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key 6(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

l

Alice’'s public key
a(z, y)

{Alice, Bob}'s
shared secret
ab(z, y)

p(1))

)

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key 6(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice's secret key a Bob's secre

l !

Alice’'s public key Bob's puk

a(z,y) b(z, 1
{Alice, Bob}'s {Bob, Al
shared secret — shared s

ab(z,y) ba(z,

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key b(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret = shared secret

ab(z,y) ba(z,y)

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key b(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret = shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

tography

< Diffie—Hellman protocol”:

e a large prime p
oint (z,y) € Clock(Fy).

ses big secret a.

utes her public key a(z,y).

es big secret 0.
ites his public key b(z, y).

utes a(b(z,y)).

ites b(a(z,y)).
his shared secret
with AES-GCM etc.

Alice’s secret key a Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z,y) b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret = shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #
the public

Attacker se
Alice uses
Often atta
for each of
not just to
This reveal

Some timit
2013 “Lucl
2014 Beng

nman protocol”:

ne p
= Clock(Fyp).

. Q.

lic key a(z, y).

b.
c key b(z,y).

/).
).

cret
CM etc.

Alice’s secret key a Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret = shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #3: Attacker
the public keys a(z, y)

Attacker sees how muc
Alice uses to compute
Often attacker can see
for each operation perf
not just total time.

This reveals secret scal

Some timing attacks: -

2013 “Lucky Thirteen”
2014 Benger—van de P«

Alice’s secret key a Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #3: Attacker sees more tr
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Ali
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumle
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yar

Alice’s secret key a Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z,y) b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

ab(z, y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

Alice’s secret key a Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z,y) b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

ab(z, y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

Fix: constant-time code,
performing same operations
no matter what scalar is.

cret key a Bob's secret key b

l !

yublic key Bob's public key

L, Y) b(z,y)
PN L
, Bob}'s {Bob, Alice}'s
] secret = shared secret
z,y) ba(z, y)

1: Many choices of p are unsafe!

2. Clocks aren't elliptic!
dex calculus
lock cryptography.

RSA-3072 security
!1536.

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger—van de Pol-Smart—Yarom; etc.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Addition o

22 + y? =
Sum of (z-
((z1y2+y1
(y192—21

Bob's secret key b

l

Bob's public key
b(z, y)

{Bob, Alice}'s
shared secret
ba(z,y)

bices of p are unsafe!

en't elliptic!

raphy.
curity

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Addition on an elliptic

>

NEl

z? + y2 =1 — 30z%y°.
Sum of (z1,y1) and (z
((z1y2+y122)/(1-302
(y192—2122) /(14302

Warning #3: Attacker sees more than Addition on an elliptic curve

ot key b
the public keys a(z,y) and b(z, y).
lic key Attacker sees how much time ij B
/) Alice uses to compute a(b(z,y)). neutral = (0, 1)
Often attacker can see time Pi = (z1,y1)
ce}'s for each operation performed by Alice, P> = (z2
ccret not just total time. P — (z:
2 This reveals secret scalar a.
> unsafe!

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

z? + y2 = 1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30Z12271Y2),
Fix: constant-time code, (y192—z122)/(1+30z122Y1Y2)).
performing same operations
no matter what scalar is.

Warning #3: Attacker sees more than Addition on an elliptic curve

the public keys a(z,y) and b(z, y).

. Y
Attacker sees how much time

Alice uses to compute a(b(z, y)). } neutral = (0.1)
Often attacker can see time P = (z1,v1)
for each operation performed by Alice, P2>: 1(;332, Y2)
not just total time. P; = (z3,y3)

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

z? + y2 =1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30Z12271Y2),
Fix: constant-time code, (y1y2—z122)/(14+30z122Y1Y2)).
performing same operations
no matter what scalar is.

-3: Attacker sees more than
keys a(z,y) and b(z, y).

es how much time

to compute a(b(z,y)).

cker can see time

eration performed by Alice,
tal time.

s secret scalar a.

g attacks: 2011 Brumley—Tuveri;
<y Thirteen” (not ECC);
er—van de Pol-Smart—Yarom; etc.

ant-time code,
same operations
what scalar is.

Addition on an elliptic curve

Yy
} neutral = (0,1)
PL = (z1,91)
P2 = (22.92)
Py = (23, y3)

z? + y2 =1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30z1229192),
(y192—2122)/(1+30Z1229192)).

The clock

72 +y? =
Sum of (z-
(12 + 11
Y1y2 — 1

sees more than
and b(z, y).

h time

1(6(z, y)).
time
ormed by Alice,

ar a.

011 Brumley—Tuveri;
(not ECC);
|-Smart—Yarom; etc.

de,
Flons
S.

Addition on an elliptic curve

Yy
} neutral = (0,1)
PL = (z1,91)
P2 = (22.92)
Py = (23, y3)

z? + y2 =1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30z1229192),
(y192—2122)/(1+30Z1229192)).

The clock again, for co

Y

A
NEl

-

z’ +y? =1

Sum of (z1,y1) and (z
(12 + y122,

Y1y2 — T1Z2).

an

CE,

/—Tuveri;

‘om; etc.

Addition on an elliptic curve

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,v2)
>
P = (23, ¥3)

z? + y2 = 1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30Z12291Y2),
(y192—2122)/(1430Z122y192))

The clock again, for comparison:

Y
| neutral = (0, 1)
= (21

P2:(£l
> T
P3:(CI:

z’ +y? =1

Sum of (z1,y1) and (z2, y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).

Addition on an elliptic curve

Y
A
neutral = (0, 1)
P = (z1,v1)
P> = (z2,2)
> I
P = (23, ¥3)

z? + y2 = 1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30Z1229192),
(y192—2z122)/(1430Z122y192))-

The clock again, for comparison:

Y
A
neutral = (0, 1)
P = (z1,v1)
P> = (z2,y2)
> X
P = (23, y3)

z’ +y? =1

Sum of (z1,y1) and (z2, y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).

n an elliptic curve

Y
A
neutral = (0, 1)
P = (z1,91)
P> = (z2,y2)
> T
P = (z3,y3)
1 — 30z2%y?.

, Y1) and (z2,92) is
z7)/(1-30z122y1Y2),
z2)/(1430z122Y1Y2)).

The clock again, for comparison:

Y
} neutral = (0,1)
P = (z1.91)
P> = (z2,y2)
> T
P3 = (23, y3)

z’ +y? =1

Sum of (z1,¥1) and (z2,¥2) is
(z1y2 + Y1220,

Y1Y2 — T1T2).

More ellipt

Choose an
Choose a 1

{(z.y) eF
$2+g
Isa “comp

def edwarc
xl,yl =
X2,y2 =
x3 = (x:
y3 = (¥

return 3

curve

itral = (0, 1)

°1 = (21, Y1)

s P2 = (22,42)
psy = (933 Y3)
2,Y2) is
1Z2Y1Y2),
1Z2Y1Y2)).

The clock again, for comparison:

Y
} neutral = (0,1)
= (z1,v1)
= (z2,2)
~
P = (23, y3)

z’ +y? =1

Sum of (z1,y1) and (z2, y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).

More elliptic curves

Choose an odd prime p
Choose a non-square d

1(z,y) € Fp X Fp
z° + y? =1 + dz?
is a “complete Edwards

def edwardsadd(P1,P2;

xl,yl = P1
X2,y2 = P2
= (x1*y2+yl*x2)/,

y3 = (yl*xy2-x1%*x2)/,

return x3,y3

 Y2)
. Y3)

The clock again, for comparison:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

z’ +y? =1

Sum of (z1,y1) and (z2, y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F,.

{(z.y) € Fp x Fyp
z° + y° =1+ dz’y?}
Is a “‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
X2,y2 = P2
x3 = (x1*xy2+yl1*x2)/(1+d*x1*x23
y3 = (yl*xy2-x1%x2)/(1-d*x1*x23

return x3,y3

The clock again, for comparison:

Y
A
neutral = (0, 1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

z’ +y? =1

Sum of (z1,y1) and (z2, y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a ‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*xy2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

again, for comparison:

Y
} neutral = (0,1)
P = (z1.91)
P> = (z2,y2)
- T
P3 = (23, y3)
1.
, Y1) and (z2,92) is
o,

7).

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a “complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*xy2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

“Hey, there
in the Edw
What if th

mparison:

itral = (0, 1)
P = (z1,91)
3 P> = (z2,92)

j P3 = (z3,93)

2,Y2) is

More elliptic curves

Choose an odd prime p.
Choose a non-square d € Fy.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a “complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
X2,y2 = P2
x3 = (x1*xy2+y1*x2)/(1+d*x1*x2%y1*xy2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1*y2)

return x3,y3

“Hey, there are division
in the Edwards additior
What if the denominat

Y1)
2, Y2)

3, Y3)

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F,.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a “‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
X2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*xy2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 0?"

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a ‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*y2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a ‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*y2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a ‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*y2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

More elliptic curves

Choose an odd prime p.
Choose a non-square d € F.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a ‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*y2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

IC curves

odd prime p.
on-square d € Fyp.

:p X Fp :
° =1+ dz’y?}
lete Edwards curve’ .

1sadd (P1,P2):

P1

P2

| %y 2+y1%x2) / (1+d*x1*x2%y1*y2)
| %y 2-x1%x2) / (1-d*x1*x2%y1*y2)
(3,y3

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 0?"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divis

3}
. curve' .

(1+d*x1*x2%y1*y2)
(1-d*x1*x2%y1*xy2)

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 0?"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

"Hey, divisions are reall

y1xy2)
y1xy2)

“"Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divisions are really slow!”

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divisions are really slow!”

“Hey, there are divisions
in the Edwards addition [aw!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).

Remember arithmetic on fractions?

“Hey, there are divisions
in the Edwards addition [aw!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.
Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
hyperelliptic.org/EFD

> are divisions
ards addition law!

» denominators are 07"

an prove that
inators are never 0.
w is complete.

relies on
on-square d.

d choose square a:
Il elliptic, and

ems to work,

re failure cases,
itable by attackers.

s more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.

Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
hyperelliptic.org/EFD

Elliptic-cur

Standardiz
base point

Alice know
and Bob's
Alice comg
shared secr

Alice uses
and auther

Packet ove
32 bytes fc
24 bytes fc
16 bytes fc

S
' law!

rs are 07"

t
ever 0.
te.

uare d:
d

5es,
ackers.
licated.

“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.

Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
hyperelliptic.org/EFD

Elliptic-curve cryptogra

Standardize prime p, sa

base point (z,y) on ell

Alice knows her secret
and Bob's public key bf
Alice computes (and ca

shared secret ab(z,y).

Alice uses shared secret

and authenticate packe

Packet overhead at hig

32
24
16

oytes for Alice's puk
pytes for nonce,

oytes for authentica

“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.

Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-squar

base point (z,y) on elliptic curve.

Alice knows her secret key a

and Bob's public key b(z, y).

Alice computes (and caches)

shared secret ab(z,y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security le\

32
24
16

oytes for Alice's public key,
pytes for nonce,

oytes for authenticator.

“Hey, divisions are really slow!” Elliptic-curve cryptography

Instead of dividing a by b, Standardize prime p, safe non-square d,
store fraction a /b as pair (a, b). base point (z,y) on elliptic curve.

Remember arithmetic on fractions? .
Alice knows her secret key a

One option: “projective coordinates” . and Bob's public key b(z, y).
Store (X,Y, Z) representing (X/Z,Y/Z). Alice computes (and caches)

. . . , shared secret ab(z, v).
Another option: “extended coordinates’. (z,9)

Store projective (X,Y,Z) and T = XY/Z. Alice uses shared secret to encrypt

See “Explicit Formulas Database” and authenticate packet for Bob.

for many more options and speedups: Packet overhead at high security level:
hyperelliptic.org/EFD 32 bytes for Alice’s public key,
24 bytes for nonce,

16 bytes for authenticator.

lons are really slow!”

dividing a by b,
on a/b as pair (a, b).
arithmetic on fractions?

. “projective coordinates’ .
", Z) representing (X/Z,Y/Z).

tion: “extended coordinates’ .

ctive (X,Y,Z) and T = XY/Z.

it Formulas Database”
1ore options and speedups:
ptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,
base point (z,y) on elliptic curve.

Alice knows her secret key a
and Bob's public key b(z, y).
Alice computes (and caches)
shared secret ab(z,y).

Alice uses shared secret to encrypt
and authenticate packet for Bob.

Packet overhead at high security level:
32 bytes for Alice's public key,
24 bytes for nonce,

16 bytes for authenticator.

Bob receiv
sees Alice’s
Bob compt
shared sect

Bob uses s
verity auth

Alice and [
reuse the s
encrypt, at
all subsequ

All of this
we can aff

y slow!”

/ b,
ir (a, b).
n fractions?

> coordinates’ .
iting (X/Z,Y/Z2).

ded coordinates’ .

7) and T = XY/Z.

Database”

and speedups:
“FD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,
base point (z,y) on elliptic curve.

Alice knows her secret key a
and Bob's public key b(z, y).
Alice computes (and caches)
shared secret ab(z,y).

Alice uses shared secret to encrypt
and authenticate packet for Bob.

Packet overhead at high security level:
32 bytes for Alice's public key,
24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,
sees Alice's public key
Bob computes (and cac
shared secret ab(z,y).

Bob uses shared secret
verify authenticator anc

Alice and Bob

reuse the same shared
encrypt, authenticate, \
all subsequent packets.

All of this is so fast the
we can afford to encryy

’[Z).

tes' .

XY/Z.

Elliptic-curve cryptography

Standardize prime p, safe non-square d,
base point (z,y) on elliptic curve.

Alice knows her secret key a
and Bob's public key b(z, y).
Alice computes (and caches)
shared secret ab(z,y).

Alice uses shared secret to encrypt
and authenticate packet for Bob.

Packet overhead at high security level:
32 bytes for Alice's public key,
24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z,y).

Bob uses shared secret to
verify authenticator and decrypt pa

Alice and Bob

reuse the same shared secret to
encrypt, authenticate, verify, and de
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets

Elliptic-curve cryptography

Standardize prime p, safe non-square d,
base point (z,y) on elliptic curve.

Alice knows her secret key a
and Bob's public key b(z, y).
Alice computes (and caches)
shared secret ab(z,y).

Alice uses shared secret to encrypt
and authenticate packet for Bob.

Packet overhead at high security level:
32 bytes for Alice's public key,
24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z, y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

ve cryptography

e prime p, safe non-square d,
(z,y) on elliptic curve.

s her secret key a
public key b(z, y).
utes (and caches)
et ab(z,y).

shared secret to encrypt
iticate packet for Bob.

rhead at high security level:
r Alice’s public key,

r NONcCe,

r authenticator.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z,y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe exal

Choose p =
Choose d -
this is non-

T2 +y° =
IS a safe cL

phy

fe non-square d,
ptic curve.

key a

z,9).
ches)

- To encrypt
t for Bob.

h security level:
lic key,

tor.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z,y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/12
this is non-square in F;

Is a safe curve for ECC

el

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z,y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;

this is non-square in Fy.
z° + y° =1+ dz’y?
Is a safe curve for ECC.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z, y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z, y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?

Is a safe curve for ECC.
—22 4 g2 = 1 — dg2y?
Is another safe curve
using the same p and d.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z, y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 4 g2 = 1 — dg2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using /-1 € Fy,

es packet,

s public key a(z,y).
ites (and caches)
et ab(z, y).

hared secret to
enticator and decrypt packet.

3ob

ame shared secret to
ithenticate, verify, and decrypt
ent packets.

is so fast that
ord to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 442 = 1 — dz2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using v/—1 € Fy,.

Even more

Edwards cl
22 442 =

Twisted Ec
az? + 12 -

Weierstras:
y2 = 23 +

Montgome

B'y2 — 33

Many relat
e.g., obtair
given Mon
computing

(2,).
hes)

to
I decrypt packet.

secret to
rerify, and decrypt

t
it all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 442 = 1 — dz2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using v/—1 € Fy,.

Even more elliptic curv

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curve
az?® + y? = 1+ dz’y°.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By? = z3 + Az? + z.

Many relationships:

e.g., obtain Edwards (z
given Montgomery (z’,
computing £ = z' /Yy, 1

“ket.

Crypt

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 442 = 1 — dz2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using v/—1 € Fy,.

Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az?® + y? = 1+ dz’y°.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By? = z3 + Az? + z.

Many relationships:
e.g., obtain Edwards (z, y)
given Montgomery (z',y') by

computing z = z'/y', y = (' — 1)/

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 4 g2 = 1 — dg2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using /-1 € Fy,.

Even more elliptic curves

Edwards curves:

2 + y? =1+ dzy?.
Twisted Edwards curves:
az? + y? = 1+ dz?y?.
Weierstrass curves:

y2 = g3 + asT + Gg.
Montgomery curves:

By? = z3 + Az? + z.

Many relationships:
e.g., obtain Edwards (z, y)
given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

nple

= 222 — 10
= 121665/121666;
square in Fyp.

1 + dz?y?
irve for ECC.

= 1 — dz?y?
safe curve
ame p and d.

1e second curve
curve In disguise:
n first curve

>, using v/ —1 € Fyp.

Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az?® + y? = 1+ dz’y°.

Weierstrass curves:
y2 = g3 + a\sT + ag.

Montgomery curves:
By? = 23 + Az? + z.

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Addition o
>

Even more elliptic curves Addition on Weierstras:

y2 ::1;3—|—a,4:1;+a,6:

Edwards curves:

1666; 2 +y? = 1+ dz’y°.
Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By’ = z3 + Az’ + .

-rv.e Many relationships:

HISE e.g., obtain Edwards (z, y)

_ given Montgomery (z',y') by
€ Fy.

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Even more elliptic curves Addition on Weilerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

Edwards curves:
z° + y° = 1+ dz’y°.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By’ = z3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Even more elliptic curves Addition on Weilerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

Edwards curves:
2 +y? = 1+ dz°y?.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By’ =3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Weierstrass curves:
y2 = g3 + a\sT + ag.

Montgomery curves:
By’ =3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for z1 # z2, (z1,91) + (22, y2) =
(z3,y3) with z3 = X% — 1 — 2o,
y3 = A(z1 — 23) — Y1,

A= (y2 —v1)/(z2 — z1);

fory1 #0, (z1,v1) + (21, 1) =
($3,y3) with 3 = A2 — T1 — I?,
y3 = A(z1 — 23) — Y1,

A = (33:% + aq)/2y1;

(z1,v1) + (21, —y1) = 00;
(z1,91) + 00 = (21, 91);

o0 + (z2,¥2) = (22, y2);

o0 + 00 = 0O0.

Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Weierstrass curves:
y2 = g3 + a\sT + ag.

Montgomery curves:
By’ =3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for z1 # z2, (1, y1) + (2. y2) =
(z3,y3) with 23 = A — 21 — 2,
y3 = A(z1 — 23) — Y1,

A= (y2 —v1)/(z2 — z1);

fory1 #0, (z1,v1) + (21, 1) =
($3,y3) with 3 = A2 — T1 — I?,
y3 = A(z1 — 23) — Y1,

A = (33:% + aq)/2y1;

(z1,v1) + (21, —y1) = 00;
(z1,91) + 00 = (21, 91);

o0 + (z2,¥2) = (22, y2);

o0 + 00 = 0O0.

Messy to implement and test.

elliptic curves

Irves:

1 + dz’y?.
lwards curves:
- 1+ dz?y?.

> CUIVES:

a4sT + ag.

ry curves:
- Az? + 1.

lonships:
' Edwards (z, y)

tgomery (z',y') by
z=z'/y, y=(z' - 1)/(z' +1).

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for z1 # z2, (z1,91) + (22, 92) =
(z3,y3) with z3 = A2 — 31—z,
y3 = A(z1 — 23) — 1,

A= (y2 — 1)/ (z2 — z1);

for y1 #0, (z1,y1) + (1. y1) =
(z3,y3) with z3 = A2 — 31—z,
y3 = A(z1 — 23) — 1,

A = (329 + aq)/2v1;

(z1,91) + (21, —y1) = o0;
(z1,y1) + 00 = (z1,¥1);

o0 + (z2,¥2) = (22, y2);
o0 + 00 = 0.

Messy to implement and test.

Much nicel
curves witl

def scalaz
X2,22,X:
for i ir
bit =
x2,%x3
z2,23
x3,z3

X2 ,Z2

x2,%X3

z2,23

return 3

y') by
= (z' - 1)/(z'

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for x1 # xo, (331,’.91) + (332,92) —
(z3,y3) with z3 = \° —z1 — T,
Y3 = AMz1 — z3) — Y1,

A= (y2 — 1)/ (z2 — z1);

for y1 #0, (z1,y1) + (1. y1) =
(z3,y3) with z3 = A2 — 31—z,
y3:::A($1'—'$3)'_'y1,

A = (329 + aq)/2v1;

(z1,91) + (21, —y1) = 00;
(z1,91) + 00 = (z1, Y1)

o0 + (z2,y2) = (22, Y2);

o0 + 00 = 0.

Messy to implement and test.

Much nicer than Weiler:
curves with the "Mont;

def scalarmult(n,xl):
x2,22,x3,z3 = 1,0,:
for i in reversed(a
bit = 1 & (n >>]
x2,%x3

cswap (x2,
z2,z3 = cswap(z2.
x3,z3 = ((x2*xx3-2

x1% (x2%2z:
x2,z2 = ((x272-z2

4kX2%Z 2% (
x2,%X3

cswap (x2,
z2,z3 = cswap(z2.

return x2x*z2” (p-2)

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for x1 # xo, (331,’.91) + (332,92) —
(z3,y3) with z3 = \° —z1 — T,
y3:::A($1-—-x3)-—-y1,

A= (y2 — 1)/ (z2 — z1);

for y1 #0, (z1,y1) + (1. y1) =
(z3,y3) with z3 = A2 —z1 — T,
y3:::A($1'—'$3)'_'y1,

A = (329 + aq)/2v1;

(z1,91) + (21, —y1) = 00;
(z1,91) + 00 = (z1, Y1)

o0 + (z2,y2) = (22, Y2);

o0 + 00 = 0.

Messy to implement and test.

Much nicer than Weierstrass: Mont
curves with the "Montgomery ladde

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnb:
bit =1 & (n >> i)
x2,x3

cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-22*x3) ~2)
x2,z2 = ((x272-z2"2)"2,
Axx2%Zz2% (X27 2+A*X 2%

x2,x3 cswap (x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2x*z2" (p-2)

Addition on Weierstrass curves Much nicer than Weierstrass: Montgomery

y? = 23 + a4 + ag: curves with the “Montgomery ladder”.

for z1 # z2, (z1,y1) + (22, y2) =
($3,y3) with 3 = A2 — T1 — To,
y3 = AMz1 — z3) — Y1,

A= (y2 —v1)/(z2 — z1);

for y1 #0, (z1,v1) + (z1,91) =
($3,y3) with 3 = A2 — T1 — I?,
y3 = AMz1 — z3) — Y1,

A = (3z% + a4)/2y1;

(z1,v1) + (21, —y1) = 00;
(z1,91) + 00 = (T1,91);

o0 + (z2,¥2) = (22, Y2);
o0 + 00 = 0O0.

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnbits)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-2z2*%x3) "2)
((x2°2-22"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272))

X2 ,Z2

x2,x3 = cswap(x2,x3,bit)

_ z2,z3 = cswap(z2,z3,bit)
Messy to implement and test.)
return x2x*z2" (p-2)

n Weierstrass curves
a4T + ap:

0, (21, y1) + (22, 92) =
th 123:)\2—331—322,
— Z3) — Y1,

y1)/(z2 — 71);
(z1,91) + (21, 91) =
th 3 = A2 — 21 — o,
— Z3) — Y1,

- a4)/2y1;

(z1, —y1) = o0;

00 = (Z1,Y1);

) = (22, y2);

0.

mplement and test.

Much nicer than Weierstrass: Montgomery

curves with the "Montgomery ladder”.

def scalarmult(n,xl):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (maxnbits)):

bit =
x2,x3
z2,23
x3,z3

X2 ,Z2

x2,%X3
z2,23

1

& (n >> i)

cswap(x2,x3,bit)
cswap(z2,z3,bit)
((x2*x3-z2%z3) "2,

x1* (x2%z3-2z2*%x3) "2)
((x2°2-22"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272))
cswap (x2,x3,bit)
cswap(z2,z3,bit)

return x2x*z2" (p-2)

Curve selec

How to de
an attacke

1999 ANSI
2000 IEEE
2000 Certi
2000 NIST
2001 ANSI
2005 Brain
2005 NSA
2010 Certir
2010 OSC«
2011 ANS!

> CUrves

(z2,y2) =
- T — T,

d test.

Much nicer than Weierstrass: Montgomery
curves with the "Montgomery ladder”.

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnbits)):
bit =1 & (n > i)
x2,x3

cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-2z2%23) "2,
x1* (x2%z3-2z2*%x3) "2)
x2,z2 = ((x272-z2"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272))

x2,x3 cswap (x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2" (p-2)

Curve selection

How to defend yourself
an attacker armed with

1999 ANSI X9.62.
2000 IEEE P1363.
2000 Certicom SEC 2.
2000 NIST FIPS 186-2
2001 ANSI X9.63.
2005 Brainpool.

2005 NSA Suite B.
2010 Certicom SEC 2\
2010 OSCCA SM2.
2011 ANSSI FRP256V:

Much nicer than Weierstrass: Montgomery
curves with the "Montgomery ladder”.

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnbits)):
bit = 1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-2z2*%x3) "2)
x2,z2 = ((x272-z2"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272))

x2,x3 cswap (x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2x*z2” (p-2)

Curve selection

How to defend yourself against
an attacker armed with a mathemat

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.

Much nicer than Weierstrass: Montgomery Curve selection

curves with the “Montgomery ladder”. How to defend yourself against

def scalarmult(n,x1): an attacker armed with a mathematician:

x2,z2,x3,z3 = 1,0,x1,1 1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.

for i in reversed(range (maxnbits)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-2z2*%x3) "2)
((x2°2-22"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272))

X2 ,Z2

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2x*z2" (p-2)

- than Weierstrass: Montgomery Curve selection You can pi

1 the "Montgomery ladder” .

How to defend yourself against What your
‘mult(n,x1): an attacker armed with a mathematician: No known
3,z3 = 1,0,x1,1 ECC user's

1999 ANSI X9.62.

1 reversed(range (maxnbits)): 2000 IEEE P1363. (“Elliptic-c
L& (o >> 1) 2000 Certicom SEC 2. Example o
= cswap(x2,x3,bit) 2000 NIST FIPS 186-2. Standard k
= cswap(z2,23,bit) 2001 ANSI X9.63. has huge p
= ((X2*x3—22*23)“2: 2005 Brainpool. l.e., exacth
- ?Zé}(:z—i*? i 2005 NSA Suite B. Al eriteris

4*X2*22*(X2”2+;‘;*X2*22+22A2)) 2010 Certicom SEC 2 v2. See our ev.
2010 OSCCA SM2.
= cswap (x2,x3,bit) satecurve

2011 ANSSI FRP256V1.
= cswap(z2,z3,bit)

2xz2" (p-2)

strass: Montgomery
romery ladder” .

1,1

-ange (maxnbits)) :
)

x3,bit)

z3,bit)

2%23) "2,
3-z2%x3) "2)

2"2) 72,
X272+A*x2%z2+2272))
x3,bit)

z3,bit)

Curve selection

How to defend yourself against
an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of the

What your chosen stan
No known attack will c
ECC user’s secret key f
(“Elliptic-curve discrete

Example of criterion in
Standard base point (z
has huge prime “order”
I.e., exactly £ different

All criteria are compute
See our evaluation site

safecurves.cr.yp. tc

gomery

r

ts)):

2+2272))

Curve selection

How to defend yourself against
an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standard:

What your chosen standard achieve
No known attack will compute

ECC user’s secret key from public k
(“Elliptic-curve discrete-log problem

Example of criterion in all standard:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

Curve selection You can pick any of these standards.

How to defend yourself against What your chosen standard achieves:
an attacker armed with a mathematician: No known attack will compute

1999 ANS| X9 62. ECC user's secret key from public key.

2000 |IEEE P1363. (“Elliptic-curve discrete-log problem.”)

2000 Certicom SEC 2. Example of criterion in all standards:
2000 NIST FIPS 186-2. Standard base point (z, y)

2001 ANSI X9.63. has huge prime “order” /£,

2005 Brainpool. I.e., exactly £ different multiples.

2005 NSA Suite B.
2010 Certicom SEC 2 v2.
2010 OSCCA SM2.
2011 ANSSI FRP256V1.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

tion

‘end yourself against
- armed with a mathematician:

X9.62.
P1363.

com SEC 2.
FIPS 186-2.
X9.63.

pool.

Suite B.

com SEC 2 v2.
_A SM2.

51 FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do eve

You pick tl

brainpool

i

standard b

This curve
with Edwa

So you che
in the Wel

You make
It's horrenc
but It's sec

against
a mathematician:

You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right

You pick the Brainpool
brainpoolP256t1: hu
y2 — 3 — 3z + somehi

standard base point.

This curve isn't compat
with Edwards or Montg
So you check and test «
in the Weierstrass form

You make it all constar
It's horrendously slow,
but I1t's secure.

Iclan:

You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

2 = g3

standard base point.

— 3z + somehugenumber,

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

ck any of these standards.

chosen standard achieves:
attack will compute

secret key from public key.
urve discrete-log problem.”)

f criterion in all standards:
ase point (z, y)

rime “order” £,

/ £ different multiples.

are computer-verifiable.
aluation site for scripts:
2S.Cr.yp.to

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it

The attack

/ __ 1025Db3

Z 1e86be

/ _ 12aceb
Yy = d123d5

You compt
using the \
You encryy
with a hasl

ase standards.

dard achieves:
ompute

rom public key.
-log problem.”)

all standards:
Y)
L

multiples.

r-verifiable.
for scripts:

)

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it's not. You’

The attacker sent you |
/ __ 1025b35abab9150d8677:

Z 1e86bec6cb6bac12053be
/| __ 12acebeeae9abbObca8e
Yy = d123d55£68100099b65a!

You computed “shared
using the Weierstrass fc
You encrypted data usi
with a hash of a(z', y')

ey.

")

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it's not. You're screwed.

The attacker sent you (z’,y') with

.’L‘I __1025b35abab9150d86770f6bdal2f8ec 3
~ 1e86bec6cbbac120535e4134fea87831

/| _ 12acebeeaef9abbObca8ed1c0£9540d05
¥y = d123d55£68100099b65a99ac358e3a75 °

You computed “shared secret” a(z’
using the Weierstrass formulas.

You encrypted data using AES-GCN\
with a hash of a(z’,y') as a key.

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

2 = g3

standard base point.

— 3z + somehugenumber,

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it's not. You're screwed.

The attacker sent you (z’,y') with

.’L‘I __1025b35abab9150d86770f6bdal2f8ec and
~ 1e86bec6cb6bac120535e4134fea87831

/| _ 12acebeeaef9abbObca8ed1c0£9540d05
¥y = d123d55£68100099b65a99ac358e3a75 -

You computed “shared secret” a(z’,y')
using the Weierstrass formulas.

You encrypted data using AES-GCM
with a hash of a(z’,y') as a key.

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

2 = g3

standard base point.

— 3z + somehugenumber,

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it's not. You're screwed.

The attacker sent you (z’,y') with

.’L‘I __1025b35abab9150d86770f6bdal2f8ec and
~ 1e86bec6cb6bac120535e4134fea87831

/| _ 12acebeeaef9abbObca8ed1c0£9540d05
¥y = d123d55£68100099b65a99ac358e3a75 -

You computed “shared secret” a(z’,y')
using the Weierstrass formulas.

You encrypted data using AES-GCM
with a hash of a(z’,y') as a key.

What you never noticed:

(z',y") isn’t his public key b(z, y);

it Isn't even a point on brainpoolP256t1;
it's a point on y2 =23 — 3z + 5

of order only 4999.

rything right.

1e Brainpool curve
P256t1: huge prime p,
3z + somehugenumber,
ase point.

iIsn't compatible

ds or Montgomery.
ck and test every case
arstrass formulas.

it all constant-time.
lously slow,
ure.

Actually, it's not. You're screwed.

The attacker sent you (z’,y') with

.’L‘I __1025b35abab9150d86770f6bdal2f8ec and
~ 1e86bec6cbbac120535e4134fea87831

/| _ 12acebeeaef9abbObca8ed1c0£9540d05
¥y = d123d55£68100099b65a99ac358e3a75 -

You computed “shared secret” a(z’,y')
using the Weierstrass formulas.

You encrypted data using AES-GCM
with a hash of a(z’,y') as a key.

What you never noticed:

(z',v") isn’t his public key b(z, y);

It Isn't even a point on brainpoolP256t1;
it's a point on y2 =23 — 3z + 5

of order only 4999.

Your formt
because th

Addition on '
v2 =3+ a,
for x; # xo,
(x3, y3) with
y3 = A(x1 —
A=(2—n
for y1 # 0, (.
(x3, y3) with
y3 = A(x1 —
A= (3x% +:
(x1, y1) + (x
(x1,y1) + 00
00 + (x2, y2)
00 + 00 = X
Messy to imj

curve

ge prime p,
Igenumber,

‘ible
omery.
avery case
ulas.

t-time.

Actually, it's not. You're screwed.

The attacker sent you (z’,y') with

.’L‘I __1025b35abab9150d86770f6bdal2f8ec and
~ 1e86bec6cb6bac120535e4134fea87831

/| _ 12acebeeaef9abbObca8ed1c0£9540d05
¥y = d123d55£68100099b65a99ac358e3a75 -

You computed “shared secret” a(z’,y')
using the Weierstrass formulas.

You encrypted data using AES-GCM
with a hash of a(z’,y') as a key.

What you never noticed:

(z',v") isn’t his public key b(z, y);

It Isn't even a point on brainpoolP256t1;
it's a point on y2 =23 — 3z + 5

of order only 4999.

Your formulas worked f
because they work for ¢

Addition on Weierstrass curve
y2 :X3+34X+363

for x1 # xo, (x1,y1) + (X2, y2)
(x3, y3) with x3 = A% — x; — x
y3 = A(x1 — x3) — y1,

A= (y2 —y1)/(x2 — x1);

for y1 #0, (x1,y1) + (x1, 1) -
(x3, y3) with x3 = A2 — x1 — x
y3 = A(x1 — x3) — y1,

A= (3xF + a4)/2y1;

(x1,y1) + (x1, —y1) = 00;
(x1,y1) + 00 = (x1, y1
00 + (x2,¥2) = (X2, y2
00 + 00 = 0.

);
);

Messy to implement and test.

Actually, it's not. You're screwed.

The attacker sent you (z’,y') with

.’L‘I __1025b35abab9150d86770f6bdal2f8ec and
~ 1e86becb6cb6bac120535e4134fea87831

/| _ 12acebeeaef9abbObca8ed1c0£9540d05
¥y = d123d55£68100099b65a99ac358e3a75 -

You computed “shared secret” a(z’,y')
using the Weierstrass formulas.

You encrypted data using AES-GCM
with a hash of a(z’,y') as a key.

What you never noticed:

(z',v") isn’t his public key b(z, y);

It Isn't even a point on brainpoolP256t1;
it's a point on y2 =23 — 3z + 5

of order only 4999.

because they work for any y2 = z3-

Addition on Weierstrass curves
y2 = x3 + asXx + ag:

for x1 # xo, (x1,y1) + (x2,y2) =)

(x3,y3) with x3 = X? — x1 — xo,
y3 = Ax1 — x3) — y1,

A= (y2 —y1)/(x2 — x1);

for y1 #0, (x1,y1) + (x1, 1) =
(x3,y3) with x3 = X2 — x1 — xo,
y3 = A1 —x3) = y1,

A= (3xF + a4)/2y1;

(x1,y1) + (x1, —y1) = 00;
(x1,y1) + 00 = (x1, 1
00 + (x2,¥2) = (X2, y2
o0 + 00 = OQ.

);
);

Messy to implement and test. y

3

Your formulas worked for y2 = z3 -

3

Actually, it's not. You're screwed. Your formulas worked for y2 = 23 — 3z + 5

. h k f ‘=g — :
The attacker sent you (z’,y') with because they work for any y z°— 3T+ a6

;! — 1025b35abab9150d86770£6bdal2f8ec _ | Addition on Weierstrass curves
~ 1e86bec6c6baci20535e4134feal87831 y2 = x3 + asX + ag:
yl _ 12acebeeae9abbObca8ed1c0£9540d05 for x1 # xo, (Xl,)/1) + (Xz,yz) —)
d123d55£68100099b65a99ac358e3a75 -

(x3, y3) with x3 = A2 = x; — xo,
You computed “shared secret” a(z’, y') y3 = A(x1 — x3) = y1,
A= (y2 —y1)/(x2 — x1);

using the Weierstrass formulas. B
g for y1 20, (x1,y1) + (x1,y1) =

You encrypted data using AES-GCM (x3, y3) with x3 = A% — x; — xo, \ el
- I, y3 = Xx1 — x3) — y1, > NO ag here!
with a hash of a(z’, y') as a key. N = (32 4 24)/20,
What you never noticed: (1 y1) + (=) = o0
PPN . (x1,y1) + 00 = (x1. y1);
(z',vy') isn’t his public key b(z, y); 00 + (x2, y2) = (x2, y2);
it iIsn't even a point on brainpoolP256t1; 00 + 00 = 00.
Messy to implement and test. y

it's a point on y2 =23 — 3z + 5
of order only 4999.

's not. You're screwed. Your formulas worked for y2 = 23 — 3z + 5 Why this n

er sent you (z',y') with because they work for any y2 = 3 —3z+ag: a(z',y") is
5abab9150d86770f6bdal2f8ec Addition on Weierstrass curves The attack
c6cb6bac120535e4134fea87831 and y2 = x3 + agXx + ag: compares 1
eeae9abb0bca8ed1c0£9540d05 for x; # xo, (Xl,)/1) + (X2, y2) —)

5£68100099b65a99ac358e3a75 - learns your

(x3,y3) with x3 = X% — x1 — xo,

ited “shared secret” a(z’,y') y3 =Xx1—x3) = y1,

Ve c | A= (2 =)/ —x);
elerstrass formulas. for y1 #0, (x1,y1) + (x1, 1) =

ted data using AES-GCM (x3, y3) with x3 = X* — x1 — X,
y3 = Ax1 —x3) — y1, > No ag here!
A= (3 + a1)/2y1;
(x1,y1) + (x1, —y1) = 00;
L . (x1. 1) + 00 = (x1. 11
t his public key b(z, y); 00 + (x2,y2) = (x2, y2
n a point on brainpoolP256t1; 00 + 00 = 00.

M impl d :
on y2 _ $3 o 31: 4 5 essy to implement and test /

ly 4999.

10of a(z’,y') as a key.

never noticed:

);
);

re screwed. Your formulas worked for y2 = 23 — 3z + 5 Why this matters: (2,

because they work for any y2 = 3 —3z+ag: a(z',y') is determined

', y") with
0£6bdal2fBec |

Addition on Weierstrass curves

The attacker tries all 4

t134tead7831 y? =+ agx + ap: compares to the AES-C
11c0£9540d05 for xi £ 30, (xt,y1) + (2 yo) =) |
: rn r r m
99ac358e3a75 (x5, y3) with x3 = A2 — x; — . earns your secret a mo
secret” a(z’,y') ys = Mx1 — x3) = y1,
rmulas A= (y2 —y1)/(x —x1);
Hlas. for y1 # 0, (x1, y1) + (x1,y1) =
Ng AES-GCM (x3, y3) with x3 = A2 — X1 — X2,
= Ax1 — xz) — !
as a key. y3 (>;1 X3) = ¥1, > No ag here
A= (3X1 + a4)/2y1;
]: (x1.y1) + (x1, —y1) = 00;
(x1,y1) + 00 = (x1, y1);
ey b(z,y); 00 + (x2, y2) = (x2, 2);
brainpoolP256t1; 00 + 00 = 00.
Messy to implement and test. y

— 3z +5

Your formulas worked for y2 = 23 — 3z + 5 Why this matters: (z',y’) has ordel

because they work for any y? = 3 —3z+ag: a(z',y') is determined by a mod 49
. Addition on Weierstrass curves The attacker tries all 4999 possibilit
4 y? = X3 + agx + ag: compares to the AES-GCM output,
for x1 7 2, (.) 4 b2 y2) = 3 learns your secret a mod 4999.
(x3,¥3) with x3 = X* — x; — xo,
y') y3 = A(x1 — x3) — y1,
A= (y2 —y1)/(x2 —x1);
for y1 # 0, (x1,y1) + (x1,y1) =
/ (x3, y3) with x3 = A2 — x; — xo,

y3 = A(x1 —x3) — y1, > No ag here!
A= (3 + a1)/2y1;
(x1,y1) + (x1, —y1) = 00;
(x1,y1) + 00 = (x1, 11
00 + (x2, y2) = (x2, y2
256t1:; 00 + 00 = 0.

Messy to implement and test. y

);
);

Your formulas worked for y2 = 23 — 3z + 5 Why this matters: (z',y’) has order 4999.

because they work for any y2 = 3 —3z+ag: a(z',y') is determined by a mod 4999.
Addition on Weierstrass curves The attacker tries all 4999 possibilities,
y? = x>+ agx + ag: compares to the AES-GCM output,
for x1 # xo, (x1, 1) + (2, 32) =)

_) learns your secret a mod 4999.
(x3,¥3) with x3 = X* — x; — X2,

y3 = Ax1 —x3) — y1,

A= (2 —y1)/(x2 — x1);

for y1 # 0, (x1,y1) + (x1.51) =
(x3, y3) with x3 = A2 — x| — xo,
y3 = Ax1 —x3) — y1, > No ag here!
A= (3x¢ +as)/2y1;
(x1,y1) + (x1, —y1) = 00;
(x1,y1) + 00 = (x1, y1);
00 + (X2, y2) = (x2, y2);
o0 + 00 = 0.

Messy to implement and test. y

Your formulas worked for y2 = 23 — 3z + 5
because they work for any y2 = 3 —3z+ag:

Addition on Weierstrass curves
y2 = x3 + a4 X + ag:

for x; # x2, (x1,y1) + (x2, y2) =
(x3, y3) with x3 = A2 — x{ — xo,
y3 = A(x1 —x3) — y1,

A= (2 —y1)/(x2 — x1);

for y1 #0, (x1,y1) + (x1,51) =
(x3, y3) with x3 = A2 — x| — xo,
y3 = A(x1 —x3) — y1,

A= (3x12 + aq)/2y1;

(x1, y1) + (x1, —y1) = o0;

(X1, ¥1) + 00 = (x1, y1);

00 + (x2, y2) = (x2, y2);

00 + 00 = 0.

Messy to implement and test.

\

> No ag here!

Why this matters: (z',y’) has order 4999.
a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

.’L‘I ___ 9bc001a0d2d5c43863aadb0£881df3bb and
~ af3abea8leedd2385e6525521aa8ble?

/| _ 0d124e9e94dcedeb2aale3bcac1852ct
¥y = ed28eb86039c0d8e0cfaadae703eacO7"’

a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”
to combine this information.

las worked for y2 =23 — 3z + 5

ey work for any y2 = 23 —3z+ag:

Weierstrass curves

X -+ ag:

(x1,y1) + (x2, y2) =
x3 =A% —x1 — X2,
X3) — Y1,

)/(x2 — x1);

X1, y1) + (x1, 1) =
x3 =A% — x1 — x,
X3) — Y1,

4)/2y1;

L —Y1) = 00;

= (x1, »1
= (x2, y2
).

);
);

ylement and test.

\

> No ag here!

Why this matters: (z',y’) has order 4999.

a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
compares to the AES-GCM output,
learns your secret a mod 4999.

Attacker then tries again with

.’L‘I ___ 9bc001a0d2d5c43863aadb0£881df3bb and
~ af3abea8leedd2385e6525521aa8ble?

/ 0d124e9e94dcedeb2aale3bcac1852ct
¥y = ed28eb86039¢c0d8eOcfaadae’703eacO7"’

a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”
to combine this information.

Traditional
Blame the

“You shoul
the iIncomi

and had th
(And mayl

> No ag here!

Why this matters: (z',y’) has order 4999.

a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
compares to the AES-GCM output,
learns your secret a mod 4999.

Attacker then tries again with

.’L‘I ___ 9bc001a0d2d5c43863aadb0£881df3bb and
~ af3abea8leedd2385e6525521aa8ble?

/ 0d124e9e94dcedeb2aale3bcac1852ct
¥y = ed28eb86039¢c0d8eOcfaadae’703eacO7"’

a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”
to combine this information.

Traditional response to
Blame the implementor

“You should have checl
the incoming (z,y") w
and had the right order
(And maybe paid pater

-3z +5
-3z +ag:

. here!

Why this matters: (z',y’) has order 4999.

a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
compares to the AES-GCM output,
learns your secret a mod 4999.

Attacker then tries again with

.’L‘I ___ 9bc001a0d2d5c43863aadb0£881df3bb and
~ af3abea8leedd2385e6525521aa8ble?

/ 0d124e9e94dcedeb2aale3bcac1852ct
¥y = ed28eb86039¢c0d8eOcfaadae703eacO7’

a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”
to combine this information.

Traditional response to this security
Blame the implementor.

“You should have checked that

the incoming (z', ¥’) was on the rig
and had the right order.”

(And maybe paid patent fees to Cel

Why this matters: (z',y’) has order 4999.

a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
compares to the AES-GCM output,
learns your secret a mod 4999.

Attacker then tries again with

.’L‘I ___ 9bc001a0d2d5c43863aadb0£881df3bb and
~ af3abea8leedd2385e6525521aa8ble?

/| _ 0d124e9e94dcedeb2aale3bcac1852ct
¥y = ed28eb86039c0d8e0cfaadae703eacO7’

a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”
to combine this information.

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

Why this matters: (z',y’) has order 4999.

a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
compares to the AES-GCM output,
learns your secret a mod 4999.

Attacker then tries again with

.’L‘I ___ 9bc001a0d2d5c43863aadb0£881df3bb and
~ af3abea8leedd2385e6525521aa8ble?

/| _ 0d124e9e94dcedeb2aale3bcac1852ct
¥y = ed28eb86039c0d8e0cfaadae703eacO7’

a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z, y).
Design protocols to compress

one coordinate down to 1 bit, or 0 bits!
Drastically limits possibilities

for attacker to choose points.

natters: (z',y’) has order 4999.
determined by a mod 4999.

er tries all 4999 possibilities,

o the AES-GCM output,

secret a mod 4999.

1en tries again with

a0d2d5c43863aadb0£f881df3bb
a8leedd2385e6525521aa8ble?2

9e94dcedeb2aalel3bcac1852ct
86039c0d8el0cfaadae’703eacO7’

order 19559
3z + 211;
secret ¢ mod 19559,

and

“Chinese remainder theorem”

 this information.

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z,).
Design protocols to compress

one coordinate down to 1 bit, or 0 bits!
Drastically limits possibilities

for attacker to choose points.

Always mi

If the curv
and the ba
then ¢ is c.
and c- £ is

Design DH
Always ch

Montgome
but modify
curve ordel
to be large

DH protoc
are robust
every comr

y') has order 4999.
by a mod 4999.
J99 possibilities,
CM output,

d 4999.

n with

db0£f881df3bb
25521aa8ble?2

o3bcacl1852ct
14ae703eacO7!

and

d 19559.

1ainder theorem’
ytion.

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z, y).
Design protocols to compress

one coordinate down to 1 bit, or O bits!
Drastically limits possibilities

for attacker to choose points.

Always multiply DH s

If the curve has ¢ - £ po
and the base point P h
then c is called the cof:
and ¢ £ is called the ci

Design DH protocols tc
Always choose twist-¢
Montgomery formulas
but modifying B gives .
curve orders. Require &

to be large primes time

DH protocols with all ¢
are robust against
every common DH imp

- 49990.

90.
es,

nd

€m

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z,).
Design protocols to compress

one coordinate down to 1 bit, or O bits!
Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cof

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ £ is called the curve order.

Design DH protocols to multiply by
Always choose twist-secure curve

Montgomery formulas use only A,

but modifying B gives only two diff
curve orders. Require both of these
to be large primes times small cofac

DH protocols with all of these prote
are robust against
every common DH implementation

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z, y).
Design protocols to compress

one coordinate down to 1 bit, or 0 bits!
Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ - £ is called the curve order.

Design DH protocols to multiply by c.
Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different
curve orders. Require both of these orders
to be large primes times small cofactors.

DH protocols with all of these protections
are robust against
every common DH implementation error.

response to this security failure:
implementor.

d have checked that

ng (z’,y') was on the right curve
e right order.”

e paid patent fees to Certicom.)

ich better to
system without traps.

d uncompressed (z, y).
tocols to compress

1ate down to 1 bit, or O bits!
limits possibilities

r to choose points.

Always multiply DH scalar by cofactor.

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ - £ is called the curve order.

Design DH protocols to multiply by c.
Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different
curve orders. Require both of these orders
to be large primes times small cofactors.

DH protocols with all of these protections
are robust against
every common DH implementation error.

ECC stand

Fix the sta
so that sin
are secure

Bonus: ne
Curve2551

2010.03 Ac
“Curve2b5
appear on

[Google] w

this security failure:

<ed that
as on the right curve

t fees to Certicom.)

out traps.

ssed (z,y).
npress

1 bit, or O bits!
ilities

boints.

Always multiply DH scalar by cofactor.

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ - £ is called the curve order.

Design DH protocols to multiply by c.
Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different
curve orders. Require both of these orders
to be large primes times small cofactors.

DH protocols with all of these protections
are robust against
every common DH implementation error.

ECC standards: the ne

Fix the standard curves
so that simple impleme
are secure implementa

Bonus: next-generation
Curve25519 are faster t

2010.03 Adam Langley,
“Curve25519 doesn't ci
appear on IANA's list .
|Google] would like to s

failure:

ht curve

ticom.)

yits!

Always multiply DH scalar by cofactor.

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and c - £ is called the curve order.

Design DH protocols to multiply by c.
Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different
curve orders. Require both of these orders
to be large primes times small cofactors.

DH protocols with all of these protections
are robust against
every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocc
so that simple implementations
are secure implementations.

Bonus: next-generation curves such
Curve25519 are faster than the star

2010.03 Adam Langley, TLS mailing
“Curve25519 doesn't currently
appear on IANA’'s list ... and we
|Google] would like to see it include

Always multiply DH scalar by cofactor.

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ - £ is called the curve order.

Design DH protocols to multiply by c.
Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different
curve orders. Require both of these orders
to be large primes times small cofactors.

DH protocols with all of these protections
are robust against
every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols
so that simple implementations
are secure implementations.

Bonus: next-generation curves such as
Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:
“Curve25519 doesn'’t currently

appear on IANA’'s list ... and we
[Google] would like to see it included.”

Always multiply DH scalar by cofactor.

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ - £ is called the curve order.

Design DH protocols to multiply by c.
Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different
curve orders. Require both of these orders
to be large primes times small cofactors.

DH protocols with all of these protections
are robust against
every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols
so that simple implementations
are secure implementations.

Bonus: next-generation curves such as
Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:
“Curve25519 doesn'’t currently

appear on IANA’'s list ... and we
[Google] would like to see it included.”

2013.05 Bernstein—Krasnova—Lange
specify a procedure to generate a
next-generation curve at any security level.

iltiply DH scalar by cofactor.

> has ¢ - £ points
se point P has order £
alled the cofactor
called the curve order.

protocols to multiply by c.
oose twist-secure curves.

ry formulas use only A,

ing B gives only two different
s. Require both of these orders
primes times small cofactors.

ols with all of these protections
against
non DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols
so that simple implementations
are secure implementations.

Bonus: next-generation curves such as
Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:
“Curve25519 doesn't currently

appear on IANA’'s list ... and we
[Google] would like to see it included.”

2013.05 Bernstein—Krasnova—Lange
specify a procedure to generate a

next-generation curve at any security level.

2013.09 P«
that's rece
curves, IS I
adding cur

calar by cofactor.

ints

as order ¢

\ctor

irve order.

» multiply by c.
secure curves.
1se only A,

only two different

oth of these orders
s small cofactors.

f these protections

lementation error.

ECC standards: the next generation

Fix the standard curves and protocols
so that simple implementations
are secure implementations.

Bonus: next-generation curves such as
Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:
“Curve25519 doesn't currently

appear on IANA’'s list ... and we
[Google] would like to see it included.”

2013.05 Bernstein—Krasnova—Lange
specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletie
that's recently been cas
curves, Is It time to rev
adding curve25519 as 2

actor.

S.

erent
orders
tors.

ctions

error.

ECC standards: the next generation

Fix the standard curves and protocols
so that simple implementations
are secure implementations.

Bonus: next-generation curves such as
Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:
“Curve25519 doesn't currently

appear on IANA’'s list ... and we
[Google] would like to see it included.”

2013.05 Bernstein—Krasnova—Lange
specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given tf
that's recently been cast on the NIS
curves, Is it time to revive the idea
adding curve25519 as a named curv

ECC standards: the next generation

Fix the standard curves and protocols
so that simple implementations
are secure implementations.

Bonus: next-generation curves such as
Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:
“Curve25519 doesn'’t currently

appear on IANA’'s list ... and we
[Google] would like to see it included.”

2013.05 Bernstein—Krasnova—Lange
specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, Is it time to revive the idea of
adding curve25519 as a named curve?”

ECC standards: the next generation

Fix the standard curves and protocols
so that simple implementations
are secure implementations.

Bonus: next-generation curves such as
Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:
“Curve25519 doesn'’t currently

appear on IANA’'s list ... and we
[Google] would like to see it included.”

2013.05 Bernstein—Krasnova—Lange
specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, Is it time to revive the idea of
adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to
support Curve25519 are “efficiency
and resistance to side-channel attacks”
rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

ards: the next generation

ndard curves and protocols
iple implementations
Implementations.

<t-generation curves such as
0 are faster than the standards!

lam Langley, TLS mailing list:
19 doesn't currently
IANA's list ... and we

ould like to see it included.”

rnstein—Krasnova—Lange
rocedure to generate a

ation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, is it time to revive the idea of
adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to
support Curve25519 are “efficiency
and resistance to side-channel attacks”
rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

2013.09 Ni
“Agreed, w
because of

not due to
ECDH cun

xt generation

“and protocols
ntations
flons.

' curves such as
han the standards!

TLS mailing list:
Irrently

. and we
ee It included.”

snova—Lange
senerate a

t any security level.

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, iIs it time to revive the idea of
adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to
support Curve25519 are “efficiency
and resistance to side-channel attacks”
rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

2013.09 Nico Williams:
“"Agreed, we need curve
because of its technical
not due to any FUD ak
ECDH curves that we |

s

as
dards!

y |ist:

y level.

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, is it time to revive the idea of
adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to
support Curve25519 are “efficiency
and resistance to side-channel attacks”
rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 ciphe
because of its technical advantages,
not due to any FUD about the othe
ECDH curves that we have.”

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, Is it time to revive the idea of
adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to
support Curve25519 are “efficiency
and resistance to side-channel attacks”
rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, Is it time to revive the idea of
adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to
support Curve25519 are “efficiency
and resistance to side-channel attacks”
rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-
Draft. Active discussion on TLS mailing list.

2013.09 Patrick Pelletier: “Given the doubt 2013.09 Nico Williams:

that's recently been cast on the NIST “Agreed, we need curve25519 cipher suites
curves, is it time to revive the idea of because of its technical advantages,
adding curve25519 as a named curve?” not due to any FUD about the other

2013.09 Douglas Stebila: Reasons to ECDH curves that we have.

support Curve25519 are “efficiency 2013.09 Simon Josefsson writes an Internet-
and resistance to side-channel attacks” Draft. Active discussion on TLS mailing list.

rather than concerns about backdoors. .
2013.09 We announce next-generation

2013.09 Nick Mathewson: “In the Curved41417, computed for Silent Circle.
FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

2013.09 Patrick Pelletier: “Given the doubt
that's recently been cast on the NIST
curves, Is it time to revive the idea of
adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to
support Curve25519 are “efficiency
and resistance to side-channel attacks”
rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, | see
many more new users of curve25519 than
of the NIST curves, because of efficiency
and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-
Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

itrick Pelletier: “Given the doubt

ntly been cast on the NIST
t time to revive the idea of
ve25519 as a named curve?”

buglas Stebila: Reasons to
rve25519 are “efficiency
nce to side-channel attacks”
\ concerns about backdoors.

ck Mathewson: “In the
tography world nowadays, | see
 new users of curve25519 than
T curves, because of efficiency
f-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curve41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 W

r: “Given the doubt

st on the NIST
Ive the idea of
' named curve?”

a: Reasons to
> “efficiency
hannel attacks”
yout backdoors.

on: “In the

rld nowadays, | see
f curve25519 than
“ause of efficiency
ition issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curve41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce

e doubt
T

of

e’

ks"
YS.

| see
) than
lency

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curve41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves s

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves site.

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves , including 13 next-generation curves.

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 ‘“chosen
curves , including 13 next-generation curves.

2014.06 CFRG announces change of
leadership.

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites
because of its technical advantages,

not due to any FUD about the other
ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation
Curved41417, computed for Silent Circle.

2013.10 Aranha—Barreto—Pereira—Ricardini
announce next-generation curves
computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 ‘“chosen
curves , including 13 next-generation curves.

2014.06 CFRG announces change of
leadership. Previous co-chair from NSA
“will work with the two new chairs
until he retires next year" .

co Williams:

/e need curve25519 cipher suites
its technical advantages,

any FUD about the other

/es that we have.”

mon Josefsson writes an Internet-

ive discussion on TLS mailing list.

e announce next-generation
7, computed for Silent Circle.

anha—Barreto—Pereira—Ricardini
1ext-generation curves
at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 ‘“chosen

curves', including 13 next-generation curves.

2014.06 CFRG announces change of
leadership. Previous co-chair from NSA
“will work with the two new chairs
until he retires next year" .

[... more t

225519 cipher suites
advantages,

out the other

1ave.”

n writes an Internet-

1 on TLS mailing list.

next-generation
for Silent Circle.

o—Pereira—Ricardini
on curves
curity levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 ‘“chosen

curves', including 13 next-generation curves.

2014.06 CFRG announces change of
leadership. Previous co-chair from NSA
“will work with the two new chairs
until he retires next year" .

. .. more than 1000 em

r suites

Internet-

iling list.

on
rcle.

cardini

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 ‘“chosen

curves', including 13 next-generation curves.

2014.06 CFRG announces change of
leadership. Previous co-chair from NSA
“will work with the two new chairs
until he retires next year" .

... more than 1000 email messages

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves , including 13 next-generation curves.

2014.06 CFRG announces change of
leadership. Previous co-chair from NSA
“will work with the two new chairs
until he retires next year" .

[. .. more than 1000 email messages .. .]

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves , including 13 next-generation curves.

2014.06 CFRG announces change of
leadership. Previous co-chair from NSA
“will work with the two new chairs
until he retires next year" .

[. .. more than 1000 email messages .. .]

2014.12 CFRG discussion is continuing.

2013.10 We announce SafeCurves site.

2013.11 Aranha—Barreto—Pereira—Ricardini
announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces
next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves , including 13 next-generation curves.

2014.06 CFRG announces change of
leadership. Previous co-chair from NSA
“will work with the two new chairs
until he retires next year" .

[. .. more than 1000 email messages .. .]

2014.12 CFRG discussion is continuing.

Sage scripts to verify criteria for
ECDLP security and ECC security:

safecurves.cr.yp.to

Analysis of manipulability of various
curve-generation methods:

safecurves.cr.yp.to/badab5.html

Many computer-verified addition formulas:
hyperelliptic.org/EFD/

Python scripts for this talk:

ecchacks.cr.yp.to

