
ECCHacks:

a gentle introduction

to elliptic-curve cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

ecchacks.cr.yp.to

Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.



ECCHacks:

a gentle introduction

to elliptic-curve cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

ecchacks.cr.yp.to

Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)



ECCHacks:

a gentle introduction

to elliptic-curve cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

ecchacks.cr.yp.to

Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)



ECCHacks:

a gentle introduction

to elliptic-curve cryptography

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

ecchacks.cr.yp.to

Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)



Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)



Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.



Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.



Cryptography

Public-key signatures:

e.g., RSA, DSA, ECDSA.

Some uses: signed OS updates,

SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,

locked iPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,

bulk SSL encryption.

Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.



Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.



Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”



Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”



Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”



Why ECC?

“Index calculus”: fastest method we know

to break original DH and RSA.

Long history,

including many major improvements:

1975, CFRAC;

1977, linear sieve (LS);

1982, quadratic sieve (QS);

1990, number-field sieve (NFS);

1994, function-field sieve (FFS);

2006, medium-prime FFS/NFS;

2013, xq � x FFS “cryptopocalypse”.

(FFS is not relevant to RSA.)

Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”



Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”



Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:



Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:



Also many smaller improvements:

� 100 scientific papers.

Approximate costs of these algorithms

for breaking RSA-1024, RSA-2048:

CFRAC: 2120, 2170.

LS: 2110, 2160.

QS: 2100, 2150.

NFS: 280, 2112.

1985 Miller

“Use of elliptic curves in cryptography”:

“It is extremely unlikely that an

‘index calculus’ attack on the elliptic

curve method will ever be able to work.”

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) =



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) =



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) =



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.



The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Examples of points on this curve:

(0; 1) = “12:00”.

(0;�1) = “6:00”.

(1; 0) = “3:00”.

(�1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;�
p

3=4) = “5:00”.

(�1=2;�
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.

Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Addition on the clock:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��1
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).

Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) =



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) =



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.



Clock addition without sin, cos:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

Use Cartesian coordinates for addition.

Addition formula

for the clock x2 + y2 = 1:

sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>



Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).

Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>



Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>



Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



Clocks over finite fields

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�

�
��

�

�

�

�

Clock(F7) =
�

(x; y) 2 F7 � F7 : x2+y2=1
	

.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g

with arithmetic modulo 7.

e.g. 2 � 5 = 3 and 3=2 = 5 in F7.

>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>

>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3

>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>

Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3



>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>

Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3



>>> F7.__eq__ = \

... lambda a,b: a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False

>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>

Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3



>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>

Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3



>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>

Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3

>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>



>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>

Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3

>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>



>>> F7.__add__ = \

... lambda a,b: F7(a.int + b.int)

>>> F7.__sub__ = \

... lambda a,b: F7(a.int - b.int)

>>> F7.__mul__ = \

... lambda a,b: F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>

Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3

>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>



Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3

>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>



Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3

>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>

>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?



Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3

>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>

>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?



Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3

>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>

>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?



>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>

>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?



>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>

>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.



>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>

>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.



>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>

>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.



>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.



>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)



>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)



>>> def scalarmult(n,P):

... if n == 0: return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)



Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)



Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.



Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.



Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.



Clock cryptography

The “Clock Diffie–Hellman protocol”:

Standardize a large prime p

and base point (x; y) 2 Clock(Fp).

Alice chooses big secret a.

Alice computes her public key a(x; y).

Bob chooses big secret b.

Bob computes his public key b(x; y).

Alice computes a(b(x; y)).

Bob computes b(a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.



Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.



Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.



Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



Alice’s secret key a

��

$$

Bob’s secret key b

��

zz

Alice’s public key
a(x; y)

((

Bob’s public key
b(x; y)

vvfAlice;Bobg’s
shared secret
ab(x; y)

=
fBob;Aliceg’s
shared secret
ba(x; y)

Warning #1: Many choices of p are unsafe!

Warning #2: Clocks aren’t elliptic!

Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p � 21536.

Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



Warning #3: Attacker sees more than

the public keys a(x; y) and b(x; y).

Attacker sees how much time

Alice uses to compute a(b(x; y)).

Often attacker can see time

for each operation performed by Alice,

not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley–Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger–van de Pol–Smart–Yarom; etc.

Fix: constant-time code,

performing same operations

no matter what scalar is.

Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3



Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3



Addition on an elliptic curve

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�

P2 = (x2; y2)�
P3 = (x3; y3)�

x2 + y2 = 1� 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)�
P2 = (x2; y2)�

P3 = (x3; y3)�

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).

More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”



More elliptic curves

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/(1-d*x1*x2*y1*y2)

return x3,y3

“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.



“Hey, there are divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.



“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.



“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.



“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.



“Hey, divisions are really slow!”

Instead of dividing a by b,

store fraction a=b as pair (a; b).

Remember arithmetic on fractions?

One option: “projective coordinates”.

Store (X; Y; Z) representing (X=Z; Y=Z).

Another option: “extended coordinates”.

Store projective (X; Y; Z) and T = XY=Z.

See “Explicit Formulas Database”

for many more options and speedups:

hyperelliptic.org/EFD

Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.



Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.



Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.



Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.



Elliptic-curve cryptography

Standardize prime p, safe non-square d,

base point (x; y) on elliptic curve.

Alice knows her secret key a

and Bob’s public key b(x; y).

Alice computes (and caches)

shared secret ab(x; y).

Alice uses shared secret to encrypt

and authenticate packet for Bob.

Packet overhead at high security level:

32 bytes for Alice’s public key,

24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.



Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.



Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.



Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.



Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.

Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).



Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.

Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).



Bob receives packet,

sees Alice’s public key a(x; y).

Bob computes (and caches)

shared secret ab(x; y).

Bob uses shared secret to

verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt

all subsequent packets.

All of this is so fast that

we can afford to encrypt all packets.

A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.

Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).



A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.

Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).



A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.

Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:



A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.

Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:



A safe example

Choose p = 2255 � 19.

Choose d = 121665=121666;

this is non-square in Fp.

x2 + y2 = 1 + dx2y2

is a safe curve for ECC.

�x2 + y2 = 1� dx2y2

is another safe curve

using the same p and d.

Actually, the second curve

is the first curve in disguise:

replace x in first curve

by
p�1 � x, using

p�1 2 Fp.

Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.

Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.

Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



Even more elliptic curves

Edwards curves:

x2 + y2 = 1 + dx2y2.

Twisted Edwards curves:

ax2 + y2 = 1 + dx2y2.

Weierstrass curves:

y2 = x3 + a4x + a6.

Montgomery curves:

By2 = x3 + Ax2 + x.

Many relationships:

e.g., obtain Edwards (x; y)

given Montgomery (x0; y0) by

computing x = x0=y0, y = (x0 � 1)=(x0 + 1).

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.

Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.

Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)



Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.

Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.



Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.

Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.



Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (y2 � y1)=(x2 � x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = �2 � x1 � x2,

y3 = �(x1 � x3)� y1,

� = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;�y1) = 1;

(x1; y1) +1 = (x1; y1);

1+ (x2; y2) = (x2; y2);

1+1 = 1.

Messy to implement and test.

Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.



Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.



Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Much nicer than Weierstrass: Montgomery

curves with the “Montgomery ladder”.

def scalarmult(n,x1):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range(maxnbits)):

bit = 1 & (n >> i)

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

x3,z3 = ((x2*x3-z2*z3)^2,

x1*(x2*z3-z2*x3)^2)

x2,z2 = ((x2^2-z2^2)^2,

4*x2*z2*(x2^2+A*x2*z2+z2^2))

x2,x3 = cswap(x2,x3,bit)

z2,z3 = cswap(z2,z3,bit)

return x2*z2^(p-2)

Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



Curve selection

How to defend yourself against

an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.

2000 NIST FIPS 186-2.

2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.

2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You can pick any of these standards.

What your chosen standard achieves:

No known attack will compute

ECC user’s secret key from public key.

(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:

Standard base point (x; y)

has huge prime “order” `,

i.e., exactly ` different multiples.

All criteria are computer-verifiable.

See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

y2 = x3 � 3x + somehugenumber,

standard base point.

This curve isn’t compatible

with Edwards or Montgomery.

So you check and test every case

in the Weierstrass formulas.

You make it all constant-time.

It’s horrendously slow,

but it’s secure.

Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!



Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.



Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.



Actually, it’s not. You’re screwed.

The attacker sent you (x0; y0) with

x0 = 1025b35abab9150d86770f6bda12f8ec
1e86bec6c6bac120535e4134fea87831

and

y0 = 12ace5eeae9a5b0bca8ed1c0f9540d05
d123d55f68100099b65a99ac358e3a75

.

You computed “shared secret” a(x0; y0)

using the Weierstrass formulas.

You encrypted data using AES-GCM

with a hash of a(x0; y0) as a key.

What you never noticed:

(x0; y0) isn’t his public key b(x; y);

it isn’t even a point on brainpoolP256t1;

it’s a point on y2 = x3 � 3x + 5

of order only 4999.

Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.



Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.



Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.



Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)



Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)



Your formulas worked for y2 = x3 � 3x + 5

because they work for any y2 = x3�3x+a6:

Addition on Weierstrass curves

y2 = x3 + a4x + a6:

for x1 6= x2, (x1; y1) + (x2; y2) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (y2 − y1)=(x2 − x1);

for y1 6= 0, (x1; y1) + (x1; y1) =

(x3; y3) with x3 = –2 − x1 − x2,

y3 = –(x1 − x3)− y1,

– = (3x2
1 + a4)=2y1;

(x1; y1) + (x1;−y1) =∞;

(x1; y1) +∞ = (x1; y1);

∞+ (x2; y2) = (x2; y2);

∞+∞ =∞.

Messy to implement and test.

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

No a6 here!

Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)



Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)



Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.



Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.



Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.



Why this matters: (x0; y0) has order 4999.

a(x0; y0) is determined by a mod 4999.

The attacker tries all 4999 possibilities,

compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

x0 = 9bc001a0d2d5c43863aadb0f881df3bb
af3a5ea81eedd2385e6525521aa8b1e2

and

y0 = 0d124e9e94dcede52aa0e3bcac1852cf
ed28eb86039c0d8e0cfaa4ae703eac07

,

a point of order 19559

on y2 = x3 � 3x + 211;

learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”

to combine this information.

Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.



Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.



Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”



Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”



Traditional response to this security failure:

Blame the implementor.

“You should have checked that

the incoming (x0; y0) was on the right curve

and had the right order.”

(And maybe paid patent fees to Certicom.)

But it’s much better to

design the system without traps.

Never send uncompressed (x; y).

Design protocols to compress

one coordinate down to 1 bit, or 0 bits!

Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”



Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”



Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.



Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”



Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”



Always multiply DH scalar by cofactor.

If the curve has c � ` points

and the base point P has order `

then c is called the cofactor

and c � ` is called the curve order.

Design DH protocols to multiply by c.

Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different

curve orders. Require both of these orders

to be large primes times small cofactors.

DH protocols with all of these protections

are robust against

every common DH implementation error.

ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”



ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”



ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”



ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”



ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”



ECC standards: the next generation

Fix the standard curves and protocols

so that simple implementations

are secure implementations.

Bonus: next-generation curves such as

Curve25519 are faster than the standards!

2010.03 Adam Langley, TLS mailing list:

“Curve25519 doesn’t currently

appear on IANA’s list : : : and we

[Google] would like to see it included.”

2013.05 Bernstein–Krasnova–Lange

specify a procedure to generate a

next-generation curve at any security level.

2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”



2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”



2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.



2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.



2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.



2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.



2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.



2013.09 Patrick Pelletier: “Given the doubt

that’s recently been cast on the NIST

curves, is it time to revive the idea of

adding curve25519 as a named curve?”

2013.09 Douglas Stebila: Reasons to

support Curve25519 are “efficiency

and resistance to side-channel attacks”

rather than concerns about backdoors.

2013.09 Nick Mathewson: “In the

FOSS cryptography world nowadays, I see

many more new users of curve25519 than

of the NIST curves, because of efficiency

and ease-of-implementation issues.”

2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership. Previous co-chair from NSA

“will work with the two new chairs

until he retires next year”.



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership. Previous co-chair from NSA

“will work with the two new chairs

until he retires next year”.

[: : :more than 1000 email messages : : : ]



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership. Previous co-chair from NSA

“will work with the two new chairs

until he retires next year”.

[: : :more than 1000 email messages : : : ]



2013.09 Nico Williams:

“Agreed, we need curve25519 cipher suites

because of its technical advantages,

not due to any FUD about the other

ECDH curves that we have.”

2013.09 Simon Josefsson writes an Internet-

Draft. Active discussion on TLS mailing list.

2013.09 We announce next-generation

Curve41417, computed for Silent Circle.

2013.10 Aranha–Barreto–Pereira–Ricardini

announce next-generation curves

computed at various security levels.

2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership. Previous co-chair from NSA

“will work with the two new chairs

until he retires next year”.

[: : :more than 1000 email messages : : : ]



2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership. Previous co-chair from NSA

“will work with the two new chairs

until he retires next year”.

[: : :more than 1000 email messages : : : ]



2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership. Previous co-chair from NSA

“will work with the two new chairs

until he retires next year”.

[: : :more than 1000 email messages : : : ]

2014.12 CFRG discussion is continuing.



2013.10 We announce SafeCurves site.

2013.11 Aranha–Barreto–Pereira–Ricardini

announce next-generation E-521.

2014.01 Discussion spreads to IRTF CFRG.

2014.01 Mike Hamburg announces

next-generation Ed448-Goldilocks.

2014.02 Microsoft announces 26 “chosen

curves”, including 13 next-generation curves.

2014.06 CFRG announces change of

leadership. Previous co-chair from NSA

“will work with the two new chairs

until he retires next year”.

[: : :more than 1000 email messages : : : ]

2014.12 CFRG discussion is continuing.

Sage scripts to verify criteria for

ECDLP security and ECC security:

safecurves.cr.yp.to

Analysis of manipulability of various

curve-generation methods:

safecurves.cr.yp.to/bada55.html

Many computer-verified addition formulas:

hyperelliptic.org/EFD/

Python scripts for this talk:

ecchacks.cr.yp.to


