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Public-key signatures:

e.g., RSA, DSA, ECDSA.
Some uses: signed OS updates,
SSL certificates, e-passports.

Public-key encryption:

e.g., RSA, DH, ECDH.

Some uses: SSL key exchange,
locked 1IPhone mail download.

Secret-key encryption:

e.g., AES, Salsa20.

Some uses: disk encryption,
bulk SSL encryption.
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} neutral = (0,1)

P = (z1,v1)
P> = (z2,y2)

Use Cartesian coordinates for addition.

Addition formula

for the clock z2 + y2 = 1:
sum of (z1,y1) and (x2,y2) is
(z1Y2 + Y122, Y192 — T122).




itral = (0, 1)

P = (z1,91)
3 P> = (z2,92)
j P3 = (z3,y3)

zed by

8

Recall
-ap)) =
5N oo,
Sinap ).

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

Use Cartesian coordinates for addition.

Addition formula

for the clock z2 + y2 = 1:
sum of (z1,y1) and (x2,y2) is
(z1Y2 + Y122, Y192 — T122).

Examples of clock addr
“2:00" + “5:00"

(+v/3/4,1/2) +(1/2,
(=172, ~+/3/4) = *
“5:00" + "9:00"

(1/2,—/3/4) + (-
(1/3/4,1/2) = “2:0C

(gg) - (ig 275>

N




Y1)
2, Y2)

3, Y3)

Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
P = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x>, y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + "“5:00"

(v/3/4,1/2) + (1/2, —+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "2:00".

(gg) N (32’275)

N




Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

(gg) - @:'275)

No



Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "2:00".

(gg) - @:'275)

; 3 4\ (117 —44
5'5) \125" 125 )"

No




Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

34\ (24 T
(E’E) - (25’25)'

3 117 —44
( ' (125' 125)'

5
3 336 —527
5 625" 625 )

No

3
4

;)
;)



Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x2,y2) is

(z1y2 + Y122, Y1Y2 — T1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

3 4\ (24 7
(E’E) - (25’25)'

3 4\ (117 —44
3(5’5) h (125’ 125)'
4(§ ﬂ) _ (336 —527)

5'5 625" 625 )

(1,91) +(0,1) =

No




Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x2,y2) is

(z1y2 + Y122, Y1Y2 — T1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

3 4\ (24 7
(E’E) - (25’25)'

3 4\ (117 —44
3(5’5) h (125’ 125)'
4(§ ﬂ) _ (336 —527)

5'5 625" 625 )

(1,91) +(0,1) = (21, 91).

No




Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 4 y* = 1:

sum of (z1,y1) and (x2,y2) is

(z1Y2 + y122, Yy1Y2 — T1%2).

Examples
“2:00" +

“5:00" +

No

o
(4
(4

(z1,91) -

of clock addition:
“5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".

"9:00"

(1/2,—+/3/4) +(=1,0)
(1/3/4,1/2) = “2:00".

(24 7

B (25’ 25)'

- (117 —44
B (125’ 125)'
- (336 —527
B (625' 625 )

-(0,1) = (21, 91).

(z1,91) -

- (—z1,91) =



Clock addition without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
Pz = (23, y3)

Use Cartesian coordinates for addition.
Addition formula

for the clock z2 + y2 = 1:

sum of (z1,y1) and (x2,y2) is

(z1y2 + Y122, Y1Y2 — T1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

2(35) - (5 =)

5' 25’25 )
3 4 117 —44

3(5’5) (125’ 125)'

3 4 336 —527
4(5’5 (625' 625 )
) +
(z1,91) + (—=1,91) = (0, 1).

(z1,91) +(0,1) = (21, y1)-




tion without sin, cos:

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,y2)
> I
P3 = (23, y3)

lan coordinates for addition.
rmula

k 2 4+ y2 = 1.

,y1) and (z2,92) is

T2, Y1Y2 — T1L2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) +(1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) +(~1,0)
(1/3/4,1/2) = “2:00".

34\ _ (24 7Y
£o-les)
3(5’ 5) B (125’ 125)'
;‘(? 2:)(0 (12)3?(632572 -
(fBi Zi) + (—’161, Y1) i ?01 i)-

N

Clocks ove

C|OCk(F7)
Here F7 =

with arithn
eg. 2-5=



Sin, COS:

itral = (0, 1)

P = (z1,91)
3 P> = (z2,92)
j P3 = (z3,y3)

tes for addition.

- 1:
), Y2) IS
1Z2).

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + “9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "2:00".

34\ _ (24 7Y
£o-les)
3(5’ 5) B (125’ 125)'
;‘(? 2:)(0 (12)3?(632572 -
(fBi Zi) + (—’161, Y1) i ?01 i)-

No

Clocks over finite fields

Clock(F7) = {(z,y) €
Here F7 = {0,1,2, 3,4,
={0,1,2,3, —
with arithmetic modulo
eg. 2-5=3and 3/2:



Y1)
2, Y2)

3, Y3)

on.

Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".

“5:00" + "9:00"
= (1/2,—+/3/4) + (-1, 0)
= (1/3/4,1/2) = "2:00" .

(5:5) = (35728)

(33) - (=)
(- (22)
(z1,91) +(0,1) = (21, 91).
(z1,91) + (—z1,91) = (0,1).

Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg 2-5=3and 3/2=5in Fy.



Examples of clock addition:
“2:00" + “5:00"

(v/3/4,1/2) + (1/2,—+/3/4)
(—=1/2,—+/3/4) = “7:00".
“5:00" + "“9:00"

(1/2,—+/3/4) + (—1,0)
(v/3/4,1/2) = "“2:00".

(55)- (G5 )
(3:5) - ()
(33)- (o)
(1,91) +(0,1) = (21, y1)-
(z1,91) + (—z1,91) = (0, 1).

No

Clocks over finite fields

C|OCk(F7)

= {(a:,y) c F; xF7: :1:2+y2:1}.

Here F7 = {0,1,2,3,4,5,6}
~{0,1,2,3,-3, -2, 1}

with arithmetic modulo 7.
eg. 2-5=3and 3/2=5inF7.



f clock addition:
5:00"

1/2) +(1/2,—+/3/4)
- J/33) = "7:00".
9:00"

/3/4) + (—1,0)
1/2) = “2:00".

24 7
- (25’ 25)'
117 —44
- (125’ 125)'
336 —527
- (625' 625 )
(0,1) = (z1,91).
(—z1,91) = (0,1).

Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22+y°=1}.

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg 2-5=3and 3/2=5in Fy.

>>>

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for x
for

11



tion:

—/3/4)
7:00".

Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22+y°=1}.

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg 2-5=3and 3/2=5in Fy.

>>> for x in range (7]

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for y in range
if (x*x+y*y)
print (x,y.



Clocks over finite fields >>> for x in range(7):

for y in range(7):

if (xxx+y*xy) % 7 ==

° ' ° print (x,y)
¢ .« o o
o o (O’ 1)
¢ (0, 6)
o o (1, O)
(2, 2)
Clock(F7) = {(z,v) € F7 x F7 : z2+y°=1}. (2, 5)
Here F; ={0,1,2,3,4,5,6} (5, 2)
~{0,1,2,3,—3, -2, —1} (5, 5)
with arithmetic modulo 7. (6, 0)

eg. 2-5=3and 3/2=5in F7. >>>




Clocks over finite fields

Clock(F7) = {(z,vy) € F7 x F7 : 22+y°=1}.

Here F7 = {0,1,2,3,4,5,6}
={0,1,2,3,-3,-2, -1}

with arithmetic modulo 7.

eg. 2-5=3and 3/2=5in Fy.

>>> for x in range(7):

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for y in range(7):
if (xxx+y*y) % 7 ==
print (x,y)



r finite fields

— {(a:,y) e F; x F7: :1:2+y2:1}.
{0,1,2,3,4,5,6}
{0,1,2,3,-3,-2,—1}

1etic modulo 7.

-3 and 3/2=5 in F7.

>>>

(0,
(0,

(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):
for y in range(7):
if (xxx+y*xy) % 7 ==
print (x,y)

>>> class

def

S¢

def

re

__Te

>>> print
2

>>> print
6

>>> print
0

>>> print
3



F- x F7: :1:2+y2:1}.
5,6}
3,—2,—1}

=5 1In F7.

>>>

(0,
(0,
(1,
(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):

for y in range(7):

if (xxx+y*xy) % 7 ==

print (x,y)

>>> class F7:
def __init__(se
self.int = x
def __str__(sel
return str(se
__repr__ = __st
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3



+y?

1}.

>>>

(0,
(0,

(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):
for y in range(7):
if (xxx+y*xy) % 7 ==
print (x,y)

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3



>>>

(0,
(0,

(2,
(2,
(5,
(5,
(6,
>>>

for x in range(7):
for y in range(7):
if (x*xx+y*y) % 7 ==
print (x,y)

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3



in range(7):

y in range(7):
(x*xx+y*y) % 7 ==

print (x,y)

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):

return str(self.int)

__repr = str

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)
3

>>> F7.__c¢
lamt

>>>

>>> print

True

>>> print

True

>>> print

True

>>> print

False

>>> print

False

>>> print

False



7)
o/o7==

>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3

>>> F7.__eq__ = \

lambda a,b: a.]

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F

F

Fi

Fi



>>> class F7:
def __init__(self,x):
self.int = x % 7
def __str__(self):
return str(self.int)
__repr__ = __str__
>>> print F7(2)
2
>>> print F7(6)
6
>>> print F7(7)
0
>>> print F7(10)

3

>>> F7.__eq__ =\

lambda a,b: a.int ==
>>>
>>> print F7(7) == F7(0)
True
>>> print F7(10) == F7(3)
True
>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)
False

>>> print F7(0) == F7(2)
False

>>> print F7(0) == F7(3)

False

b.1int



>>> class F7: >>> F7.__eq__ =\
def __init__(self,x): - lambda a,b: a.int == b.int
self.int = x % 7 >>>
def __str__(self): >>> print F7(7) == F7(0)
return str(self.int) True
__repr__ = __str__ >>> print F7(10) == F7(3)
True
>>> print F7(2) >>> print F7(-3) == F7(4)
2 True
>>> print F7(6) >>> print F7(0) == F7(1)
6 False
>>> print F7(7) >>> print F7(0) == F7(2)
0 False
>>> print F7(10) >>> print F7(0) == F7(3)
3 False




F7:
__init__(self,x):
1f.int = x 4 7
__str__(self):
sturn str(self.int)
pr__ = Str

F7(2)

F7(6)

F7(7)

F7(10)

>>> F7.__eq__ = \

lambda a,b: a.int == b.int

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

1 amt

print

print

print



1 ,x)
b T
£):
1f.int)

>>> F7.__eq__ = \

lambda a,b: a.int == b.int

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \
lambda a,b: F7

F7.__sub__ =\
lambda a,b: F7

F7.__mul__ = \

lambda a,b: F7

print F7(2) + F7¢

print F7(2) - F7(

print F7(2) * F7(



>>> F7.__eq__ = \

lambda a,b: a.int == b.int

>>>

>>> print
True

>>> print
True

>>> print
True

>>> print
False

>>> print
False

>>> print

False

F7(7) ==

F7(10) =

F7(-3)

F7(0) ==

F7(0) ==

F7(0) ==

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.]
F7.__sub__ =\

lambda a,b: F7(a.int - b.]
F7.__mul__ = \

lambda a,b: F7(a.int * b.]

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)



>>> F7.__eq__ = \

lambda a,b: a.int == b.1int
>>>
>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True
>>> print F7(-3) == F7(4)
True
>>> print F7(0) == F7(1)
False
>>> print F7(0) == F7(2)
False
>>> print F7(0) == F7(3)

False

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)
print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)



q__ =

\

da a,b: a.int ==

F7(7)

F7(10)

F7(-3)

F7(0)

F7(0)

F7(0)

F7(0)

F7(3)

F7(4)

F7(1)

F7(2)

F7(3)

b.int

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

Larger exal

p = 10000(
class Fp:

def clock:
xl,yl =
X2,y2 =
x3 = x1>»
y3 =yl

return 3



nt ==

(0)

7(3)

7 (4)

(1)

(2)

(3)

b.int

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

Larger example: Clock(

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3



>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

F7.__add__ = \

lambda a,b: F7(a.int + b.int)
F7.__sub__ =\

lambda a,b: F7(a.int - b.int)
F7.__mul__ = \

lambda a,b: F7(a.int * b.int)

print F7(2) + F7(5)

print F7(2) - F7(5)

print F7(2) * F7(5)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3



>>> F7.__add
lambda a,b: F7(a.int + b.int)
>>> F7.__sub__ =\
lambda a,b: F7(a.int - b.int)
>>> F7.__mul__ = \

_ \ Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

lambda a,b: F7(a.int * b.int)
def clockadd(P1,P2):

>>>
xl,yl = P1
>>> print F7(2) + F7(5)
x2,y2 = P2
0
x3 = x1*y2+yl*xx2
>>> print F7(2) - F7(5)
y3 = yl*xy2-x1*x2
4
return x3,y3
>>> print F7(2) * F7(5)
3

>>>




1dd

\

yda a,b: F7(a.int + b.int)

sub

\

yda a,b: F7(a.int - b.int)

1l

\

da a,b: F7(a.int * b.int)

F7(2) + F7(5)

F7(2) - F7(5)

F7(2) * F7(5)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylky2-x1*xx2

return x3,y3

>>> P = (1
>>> P2 = «
>>> print
(4000, 7)
>>> P3 = «
>>> print
(15000, 2¢
>>> P4 = <
>>> Pb = ¢
>>> P6 = «
>>> print
(780000,
>>> print
(780000,

>>>



‘a.int + b.int)

‘a.int - b.int)

‘a.int * b.int)

5)

5)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylky2-x1*xx2

return x3,y3

>>> P = (Fp(1000),Fp!
>>> P2 = clockadd(P,F
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2.
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,
>>> P5 = clockadd (P4,
>>> P6 = clockadd(P5,
>>> print P6

(780000, 1351)

>>> print clockadd (P:

(780000, 1351)
>>>



nt)

nt)

nt)

Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>



Larger example: C|OCk(F1000003).

p = 1000003
class Fp:

def clockadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = x1*xy2+yl*xx2
y3 = ylkxy2-x1*xx2

return x3,y3

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>



mple: Clock(F1000003).

)3

dd (P1,P2):
P1

P2
y2+y1*xx2
Ky 2-x1*x2
(3,y3

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def sc¢

>>> n = 01
>>> gcalaz

(947472,
>>>

Can you fig



F1000003)-

>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def scalarmult(n,
if n == 0: rett
if n == 1: rett
Q = scalarmult
Q = clockadd(Q.
if n’% 2: Q = ¢

return Q

>>> n = oursixdigitse
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our



>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),I
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,C

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?



>>> P = (Fp(1000),Fp(2))
>>> P2 = clockadd(P,P)
>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)
>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)
>>> P5 = clockadd(P4,P)
>>> P6 = clockadd(P5,P)
>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)
>>>

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?



‘p(1000) ,Fp(2))
lockadd (P,P)
P2

-lockadd (P2,P)
P3

5)

>lockadd (P3,P)
>lockadd (P4,P)
>lockadd (P5,P)
P6

1351)

clockadd (P3,P3)
1351)

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryp
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Bob choos
Bob compi

Alice comg
Bob compi
They use t
to encrypt



2))

3,P3)

>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie—Hellr

Standardize a large prir
and base point (z,y)

Alice chooses big secre
Alice computes her puk

Bob chooses big secret
Bob computes his publi

Alice computes a(b(z, 1
Bob computes b(a(z,y
They use this shared se
to encrypt with AES-G



>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return Q

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.
Alice computes her public key a(z, !

Bob chooses big secret b.
Bob computes his public key 6(z, y)

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.



>>> def scalarmult(n,P):
if n == 0: return (Fp(0),Fp(1))
if n == 1: return P
Q = scalarmult(n//2,P)
Q = clockadd(Q,Q)
if n % 2: Q = clockadd(P,Q)

return (

>>> n = oursixdigitsecret
>>> scalarmult(n,P)

(947472, 736284)
>>>

Can you figure out our secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.
Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key b(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.



alarmult(n,P):

1 == 0: return (Fp(0),Fp(1))
1 == 1: return P
scalarmult(n//2,P)
clockadd(Q,Q)

1 % 2: Q = clockadd(P,Q)

1irn @
Irsixdigitsecret

mult(n,P)
736284 )

rure out our secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key 6(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s se

Alice's |

a:

{Alice
sharec
ab(



P):
irn (Fp(0) ,Fp(1))

1irn P
n//2,P)

Q)
lockadd (P, Q)

cret

secret n?

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key 6(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a

l

Alice’'s public key
a(z, y)

{Alice, Bob}'s
shared secret
ab(z, y)



p(1))

)

Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key 6(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice's secret key a  Bob's secre

l !

Alice’'s public key Bob's puk

a(z,y) b(z, 1
{Alice, Bob}'s {Bob, Al
shared secret — shared s

ab(z,y) ba(z,



Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key b(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a  Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret =  shared secret

ab(z,y) ba(z,y)



Clock cryptography

The “Clock Diffie—Hellman protocol”:

Standardize a large prime p
and base point (z,y) € Clock(Fy).

Alice chooses big secret a.

Alice computes her public key a(z, y).

Bob chooses big secret b.
Bob computes his public key b(z, y).

Alice computes a(b(z, y)).
Bob computes b(a(z,y)).
They use this shared secret

to encrypt with AES-GCM etc.

Alice’s secret key a  Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret =  shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,
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l !

Alice’'s public key Bob's public key

a(z,y) b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret =  shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,
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Alice’s secret key a  Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret =  shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,
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the public keys a(z, y)

Attacker sees how muc
Alice uses to compute
Often attacker can see
for each operation perf
not just total time.

This reveals secret scal

Some timing attacks: -

2013 “Lucky Thirteen”
2014 Benger—van de P«



Alice’s secret key a  Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z, y) b(z, y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

ab(z,y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #3: Attacker sees more tr
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Ali
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumle
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yar



Alice’s secret key a  Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z,y) b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

ab(z, y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.



Alice’s secret key a  Bob's secret key b

l !

Alice’'s public key Bob's public key

a(z,y) b(z,y)
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

ab(z, y) ba(z,y)

Warning #1: Many choices of p are unsafel!

Warning #2: Clocks aren't elliptic!
Can use index calculus

to attack clock cryptography.

To match RSA-3072 security

need p s 21936,

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

Fix: constant-time code,
performing same operations
no matter what scalar is.



cret key a  Bob's secret key b

l !

yublic key Bob's public key

L, Y) b(z,y)
PN L
, Bob}'s {Bob, Alice}'s
] secret =  shared secret
z,y) ba(z, y)

1: Many choices of p are unsafe!

2. Clocks aren't elliptic!
dex calculus
lock cryptography.

RSA-3072 security
!1536.

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;

2013 “Lucky Thirteen” (not ECC);

2014 Benger—van de Pol-Smart—Yarom; etc.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Addition o

22 + y? =
Sum of (z-
((z1y2+y1
(y192—21



Bob's secret key b

l

Bob's public key
b(z, y)

{Bob, Alice}'s
shared secret
ba(z,y)

bices of p are unsafe!

en't elliptic!

raphy.
curity

Warning #3: Attacker sees more than
the public keys a(z,y) and b(z, y).

Attacker sees how much time

Alice uses to compute a(b(z,y)).
Often attacker can see time

for each operation performed by Alice,
not just total time.

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

Fix: constant-time code,
performing same operations
no matter what scalar is.

Addition on an elliptic

>

NEl

z? + y2 =1 — 30z%y°.
Sum of (z1,y1) and (z
((z1y2+y122)/(1-302
(y192—2122) /(14302



Warning #3: Attacker sees more than Addition on an elliptic curve

ot key b
the public keys a(z,y) and b(z, y).
lic key Attacker sees how much time ij B
/) Alice uses to compute a(b(z,y)). neutral = (0, 1)
Often attacker can see time Pi = (z1,y1)
ce}'s for each operation performed by Alice, P> = (z2
ccret not just total time. P — (z:
2 This reveals secret scalar a.
> unsafe!

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

z? + y2 = 1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30Z12271Y2),
Fix: constant-time code, (y192—z122)/(1+30z122Y1Y2)).
performing same operations
no matter what scalar is.




Warning #3: Attacker sees more than Addition on an elliptic curve

the public keys a(z,y) and b(z, y).

. Y
Attacker sees how much time

Alice uses to compute a(b(z, y)). } neutral = (0.1)
Often attacker can see time P = (z1,v1)
for each operation performed by Alice, P2>: 1(;332, Y2)
not just total time. P; = (z3,y3)

This reveals secret scalar a.

Some timing attacks: 2011 Brumley—Tuveri;
2013 “Lucky Thirteen” (not ECC);
2014 Benger—van de Pol-Smart—Yarom; etc.

z? + y2 =1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30Z12271Y2),
Fix: constant-time code, (y1y2—z122)/(14+30z122Y1Y2)).
performing same operations
no matter what scalar is.
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ant-time code,
same operations
what scalar is.

Addition on an elliptic curve

Yy
} neutral = (0,1)
PL = (z1,91)
P2 = (22.92)
Py = (23, y3)

z? + y2 =1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30z1229192),
(y192—2122)/(1+30Z1229192)).

The clock

72 +y? =
Sum of (z-
(12 + 11
Y1y2 — 1
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Addition on an elliptic curve

Yy
} neutral = (0,1)
PL = (z1,91)
P2 = (22.92)
Py = (23, y3)

z? + y2 =1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30z1229192),
(y192—2122)/(1+30Z1229192)).

The clock again, for co
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Addition on an elliptic curve

Y
} neutral = (0,1)
P = (z1,v1)
P> = (z2,v2)
>
P = (23, ¥3)

z? + y2 = 1 — 30z%y°.

Sum of (z1,y1) and (z2, y2) is
((z1y2+y122)/(1-30Z12291Y2),
(y192—2122)/(1430Z122y192))

The clock again, for comparison:

Y
| neutral = (0, 1)
= (21

P2:(£l
> T
P3:(CI:

z’ +y? =1

Sum of (z1,y1) and (z2, y2) is
(z1y2 + Y122,

Y1y2 — T1Z2).



Addition on an elliptic curve

Y
A
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Choose an odd prime p.
Choose a non-square d € F.

{(z.y) € Fp x Fyp :
z° + y° =1+ dz’y?}
Is a ‘complete Edwards curve”.

def edwardsadd(P1,P2):
xl,yl = P1
xX2,y2 = P2
x3 = (x1*y2+y1*x2)/(1+d*x1*x2%y1*y2)
y3 = (yl*xy2-x1*x2)/(1-d*x1*x2%y1l*y2)

return x3,y3

“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.
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in the Edwards addition law!
What if the denominators are 0?"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.
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curve is still elliptic, and
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but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divisions are really slow!”



“Hey, there are divisions
in the Edwards addition law!
What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divisions are really slow!”



“Hey, there are divisions
in the Edwards addition [aw!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.
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curve is still elliptic, and
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“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).

Remember arithmetic on fractions?



“Hey, there are divisions
in the Edwards addition [aw!

What if the denominators are 07"

Answer: Can prove that
the denominators are never 0.
Addition law is complete.

This proof relies on
choosing non-square d.

If we instead choose square d:
curve is still elliptic, and
addition seems to work,

but there are failure cases,
often exploitable by attackers.
Safe code is more complicated.

“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.
Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
hyperelliptic.org/EFD
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“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.

Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
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“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.

Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
hyperelliptic.org/EFD
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“Hey, divisions are really slow!”

Instead of dividing a by b,
store fraction a/b as pair (a, b).
Remember arithmetic on fractions?

One option: “projective coordinates” .
Store (X,Y, Z) representing (X/Z,Y/Z).

Another option: “extended coordinates’.

Store projective (X,Y,Z) and T = XY/Z.

See “Explicit Formulas Database”
for many more options and speedups:
hyperelliptic.org/EFD
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base point (z,y) on elliptic curve.

Alice knows her secret key a
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“Hey, divisions are really slow!” Elliptic-curve cryptography

Instead of dividing a by b, Standardize prime p, safe non-square d,
store fraction a /b as pair (a, b). base point (z,y) on elliptic curve.

Remember arithmetic on fractions? .
Alice knows her secret key a

One option: “projective coordinates” . and Bob's public key b(z, y).
Store (X,Y, Z) representing (X/Z,Y/Z). Alice computes (and caches)

. . . , shared secret ab(z, v).
Another option: “extended coordinates’. (z,9)

Store projective (X,Y,Z) and T = XY/Z. Alice uses shared secret to encrypt

See “Explicit Formulas Database” and authenticate packet for Bob.

for many more options and speedups: Packet overhead at high security level:
hyperelliptic.org/EFD 32 bytes for Alice’s public key,
24 bytes for nonce,

16 bytes for authenticator.
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Elliptic-curve cryptography

Standardize prime p, safe non-square d,
base point (z,y) on elliptic curve.

Alice knows her secret key a
and Bob's public key b(z, y).
Alice computes (and caches)
shared secret ab(z,y).

Alice uses shared secret to encrypt
and authenticate packet for Bob.

Packet overhead at high security level:
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Elliptic-curve cryptography

Standardize prime p, safe non-square d,
base point (z,y) on elliptic curve.

Alice knows her secret key a
and Bob's public key b(z, y).
Alice computes (and caches)
shared secret ab(z,y).

Alice uses shared secret to encrypt
and authenticate packet for Bob.

Packet overhead at high security level:
32 bytes for Alice's public key,
24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z,y).

Bob uses shared secret to
verify authenticator and decrypt pa

Alice and Bob

reuse the same shared secret to
encrypt, authenticate, verify, and de
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets



Elliptic-curve cryptography

Standardize prime p, safe non-square d,
base point (z,y) on elliptic curve.

Alice knows her secret key a
and Bob's public key b(z, y).
Alice computes (and caches)
shared secret ab(z,y).

Alice uses shared secret to encrypt
and authenticate packet for Bob.

Packet overhead at high security level:
32 bytes for Alice's public key,
24 bytes for nonce,

16 bytes for authenticator.

Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z, y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.
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Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z,y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/12
this is non-square in F;

Is a safe curve for ECC
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Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z,y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;

this is non-square in Fy.
z° + y° =1+ dz’y?
Is a safe curve for ECC.
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Bob receives packet,

sees Alice's public key a(z, y).
Bob computes (and caches)
shared secret ab(z, y).

Bob uses shared secret to
verify authenticator and decrypt packet.

Alice and Bob

reuse the same shared secret to

encrypt, authenticate, verify, and decrypt
all subsequent packets.

All of this is so fast that
we can afford to encrypt all packets.

A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 4 g2 = 1 — dg2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using /-1 € Fy,
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A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 442 = 1 — dz2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using v/—1 € Fy,.

Even more elliptic curv

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curve
az?® + y? = 1+ dz’y°.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By? = z3 + Az? + z.

Many relationships:

e.g., obtain Edwards (z
given Montgomery (z’,
computing £ = z' /Yy, 1
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A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 442 = 1 — dz2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using v/—1 € Fy,.

Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az?® + y? = 1+ dz’y°.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By? = z3 + Az? + z.

Many relationships:
e.g., obtain Edwards (z, y)
given Montgomery (z',y') by

computing z = z'/y', y = (' — 1)/



A safe example

Choose p = 22°° — 19.
Choose d = 121665/121666;
this is non-square in Fy.

z° + y° =1+ dz’y?
Is a safe curve for ECC.

—22 4 g2 = 1 — dg2y?
Is another safe curve
using the same p and d.

Actually, the second curve
s the first curve in disguise:
replace z in first curve

by v/—1-z, using /-1 € Fy,.

Even more elliptic curves

Edwards curves:

2 + y? =1+ dzy?.
Twisted Edwards curves:
az? + y? = 1+ dz?y?.
Weierstrass curves:

y2 = g3 + asT + Gg.
Montgomery curves:

By? = z3 + Az? + z.

Many relationships:
e.g., obtain Edwards (z, y)
given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).



nple

= 222 — 10
= 121665/121666;
square in Fyp.

1 + dz?y?
irve for ECC.

= 1 — dz?y?
safe curve
ame p and d.

1e second curve
curve In disguise:
n first curve

>, using v/ —1 € Fyp.

Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az?® + y? = 1+ dz’y°.

Weierstrass curves:
y2 = g3 + a\sT + ag.

Montgomery curves:
By? = 23 + Az? + z.

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Addition o
>



Even more elliptic curves Addition on Weierstras:

y2 ::1;3—|—a,4:1;+a,6:

Edwards curves:

1666; 2 +y? = 1+ dz’y°.
Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By’ = z3 + Az’ + .

-rv.e Many relationships:

HISE e.g., obtain Edwards (z, y)

_ given Montgomery (z',y') by
€ Fy.

computingz =z'/y', y = (¢’ — 1)/(z' +1).




Even more elliptic curves Addition on Weilerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

Edwards curves:
z° + y° = 1+ dz’y°.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By’ = z3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).




Even more elliptic curves Addition on Weilerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

Edwards curves:
2 +y? = 1+ dz°y?.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Welerstrass curves:

y2 ::1;3+a,4:1;—|—a,6.

Montgomery curves:
By’ =3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).




Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Weierstrass curves:
y2 = g3 + a\sT + ag.

Montgomery curves:
By’ =3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for z1 # z2, (z1,91) + (22, y2) =
(z3,y3) with z3 = X% — 1 — 2o,
y3 = A(z1 — 23) — Y1,

A= (y2 —v1)/(z2 — z1);

fory1 #0, (z1,v1) + (21, 1) =
($3,y3) with 3 = A2 — T1 — I?,
y3 = A(z1 — 23) — Y1,

A = (33:% + aq)/2y1;

(z1,v1) + (21, —y1) = 00;
(z1,91) + 00 = (21, 91);

o0 + (z2,¥2) = (22, y2);

o0 + 00 = 0O0.




Even more elliptic curves

Edwards curves:
z° +y° = 1 + dz’y°.

Twisted Edwards curves:
az? + y? = 1+ dz?y?.

Weierstrass curves:
y2 = g3 + a\sT + ag.

Montgomery curves:
By’ =3 + Az’ + .

Many relationships:

e.g., obtain Edwards (z, y)

given Montgomery (z',y') by

computingz =z'/y', y = (¢’ — 1)/(z' +1).

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for z1 # z2, (1, y1) + (2. y2) =
(z3,y3) with 23 = A — 21 — 2,
y3 = A(z1 — 23) — Y1,

A= (y2 —v1)/(z2 — z1);

fory1 #0, (z1,v1) + (21, 1) =
($3,y3) with 3 = A2 — T1 — I?,
y3 = A(z1 — 23) — Y1,

A = (33:% + aq)/2y1;

(z1,v1) + (21, —y1) = 00;
(z1,91) + 00 = (21, 91);

o0 + (z2,¥2) = (22, y2);

o0 + 00 = 0O0.

Messy to implement and test.



elliptic curves

Irves:

1 + dz’y?.
lwards curves:
- 1+ dz?y?.

> CUIVES:

a4sT + ag.

ry curves:
- Az? + 1.

lonships:
' Edwards (z, y)

tgomery (z',y') by
z=z'/y, y=(z' - 1)/(z' +1).

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for z1 # z2, (z1,91) + (22, 92) =
(z3,y3) with z3 = A2 — 31—z,
y3 = A(z1 — 23) — 1,

A= (y2 — 1)/ (z2 — z1);

for y1 #0, (z1,y1) + (1. y1) =
(z3,y3) with z3 = A2 — 31—z,
y3 = A(z1 — 23) — 1,

A = (329 + aq)/2v1;

(z1,91) + (21, —y1) = o0;
(z1,y1) + 00 = (z1,¥1);

o0 + (z2,¥2) = (22, y2);
o0 + 00 = 0.

Messy to implement and test.

Much nicel
curves witl

def scalaz
X2,22,X:
for i ir
bit =
x2,%x3
z2,23
x3,z3

X2 ,Z2

x2,%X3

z2,23

return 3



y') by
= (z' - 1)/(z'

Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for x1 # xo, (331,’.91) + (332,92) —
(z3,y3) with z3 = \° —z1 — T,
Y3 = AMz1 — z3) — Y1,

A= (y2 — 1)/ (z2 — z1);

for y1 #0, (z1,y1) + (1. y1) =
(z3,y3) with z3 = A2 — 31—z,
y3:::A($1'—'$3)'_'y1,

A = (329 + aq)/2v1;

(z1,91) + (21, —y1) = 00;
(z1,91) + 00 = (z1, Y1)

o0 + (z2,y2) = (22, Y2);

o0 + 00 = 0.

Messy to implement and test.

Much nicer than Weiler:
curves with the "Mont;

def scalarmult(n,xl):
x2,22,x3,z3 = 1,0,:
for i in reversed(a
bit = 1 & (n >> ]
x2,%x3

cswap (x2,
z2,z3 = cswap(z2.
x3,z3 = ((x2*xx3-2

x1% (x2%2z:
x2,z2 = ((x272-z2

4kX2%Z 2% (
x2,%X3

cswap (x2,
z2,z3 = cswap(z2.

return x2x*z2” (p-2)



Addition on Welerstrass curves

y2 ::1;3—|—a,4:1;+a,6:

for x1 # xo, (331,’.91) + (332,92) —
(z3,y3) with z3 = \° —z1 — T,
y3:::A($1-—-x3)-—-y1,

A= (y2 — 1)/ (z2 — z1);

for y1 #0, (z1,y1) + (1. y1) =
(z3,y3) with z3 = A2 —z1 — T,
y3:::A($1'—'$3)'_'y1,

A = (329 + aq)/2v1;

(z1,91) + (21, —y1) = 00;
(z1,91) + 00 = (z1, Y1)

o0 + (z2,y2) = (22, Y2);

o0 + 00 = 0.

Messy to implement and test.

Much nicer than Weierstrass: Mont
curves with the "Montgomery ladde

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnb:
bit =1 & (n >> i)
x2,x3

cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-22*x3) ~2)
x2,z2 = ((x272-z2"2)"2,
Axx2%Zz2% (X27 2+A*X 2%

x2,x3 cswap (x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2x*z2" (p-2)



Addition on Weierstrass curves Much nicer than Weierstrass: Montgomery

y? = 23 + a4 + ag: curves with the “Montgomery ladder”.

for z1 # z2, (z1,y1) + (22, y2) =
($3,y3) with 3 = A2 — T1 — To,
y3 = AMz1 — z3) — Y1,

A= (y2 —v1)/(z2 — z1);

for y1 #0, (z1,v1) + (z1,91) =
($3,y3) with 3 = A2 — T1 — I?,
y3 = AMz1 — z3) — Y1,

A = (3z% + a4)/2y1;

(z1,v1) + (21, —y1) = 00;
(z1,91) + 00 = (T1,91);

o0 + (z2,¥2) = (22, Y2);
o0 + 00 = 0O0.

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnbits)):
bit =1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-2z2*%x3) "2)
((x2°2-22"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272) )

X2 ,Z2

x2,x3 = cswap(x2,x3,bit)

_ z2,z3 = cswap(z2,z3,bit)
Messy to implement and test. )
return x2x*z2" (p-2)




n Weierstrass curves
a4T + ap:

0, (21, y1) + (22, 92) =
th 123:)\2—331—322,
— Z3) — Y1,

y1)/(z2 — 71);
(z1,91) + (21, 91) =
th 3 = A2 — 21 — o,
— Z3) — Y1,

- a4)/2y1;

(z1, —y1) = o0;

00 = (Z1,Y1);

) = (22, y2);

0.

mplement and test.

Much nicer than Weierstrass: Montgomery

curves with the "Montgomery ladder”.

def scalarmult(n,xl):

x2,z2,x3,z3 = 1,0,x1,1

for i in reversed(range (maxnbits)):

bit =
x2,x3
z2,23
x3,z3

X2 ,Z2

x2,%X3
z2,23

1

& (n >> i)

cswap(x2,x3,bit)
cswap(z2,z3,bit)
((x2*x3-z2%z3) "2,

x1* (x2%z3-2z2*%x3) "2)
((x2°2-22"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272) )
cswap (x2,x3,bit)
cswap(z2,z3,bit)

return x2x*z2" (p-2)

Curve selec

How to de
an attacke

1999 ANSI
2000 IEEE
2000 Certi
2000 NIST
2001 ANSI
2005 Brain
2005 NSA
2010 Certir
2010 OSC«
2011 ANS!



> CUrves

(z2,y2) =
- T — T,

d test.

Much nicer than Weierstrass: Montgomery
curves with the "Montgomery ladder”.

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnbits)):
bit =1 & (n > i)
x2,x3

cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-2z2%23) "2,
x1* (x2%z3-2z2*%x3) "2)
x2,z2 = ((x272-z2"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272) )

x2,x3 cswap (x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2*z2" (p-2)

Curve selection

How to defend yourself
an attacker armed with

1999 ANSI X9.62.
2000 IEEE P1363.
2000 Certicom SEC 2.
2000 NIST FIPS 186-2
2001 ANSI X9.63.
2005 Brainpool.

2005 NSA Suite B.
2010 Certicom SEC 2\
2010 OSCCA SM2.
2011 ANSSI FRP256V:



Much nicer than Weierstrass: Montgomery
curves with the "Montgomery ladder”.

def scalarmult(n,xl):
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range (maxnbits)):
bit = 1 & (n >> i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-2z2*%x3) "2)
x2,z2 = ((x272-z2"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272) )

x2,x3 cswap (x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)

return x2x*z2” (p-2)

Curve selection

How to defend yourself against
an attacker armed with a mathemat

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.



Much nicer than Weierstrass: Montgomery Curve selection

curves with the “Montgomery ladder”. How to defend yourself against

def scalarmult(n,x1): an attacker armed with a mathematician:

x2,z2,x3,z3 = 1,0,x1,1 1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.

for i in reversed(range (maxnbits)):
bit =1 & (n > i)
x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
x3,z3 = ((x2*x3-22%23) "2,
x1* (x2%z3-2z2*%x3) "2)
((x2°2-22"2)"2,
Axx2%z2% (X27 2+A*x2%22+2272) )

X2 ,Z2

x2,x3 = cswap(x2,x3,bit)
z2,z3 = cswap(z2,z3,bit)
return x2x*z2" (p-2)




- than Weierstrass: Montgomery Curve selection You can pi

1 the "Montgomery ladder” .

How to defend yourself against What your
‘mult(n,x1): an attacker armed with a mathematician: No known
3,z3 = 1,0,x1,1 ECC user's

1999 ANSI X9.62.

1 reversed(range (maxnbits)): 2000 IEEE P1363. (“Elliptic-c
L& (o >> 1) 2000 Certicom SEC 2. Example o
= cswap(x2,x3,bit) 2000 NIST FIPS 186-2. Standard k
= cswap(z2,23,bit) 2001 ANSI X9.63. has huge p
= ((X2*x3—22*23)“2: 2005 Brainpool. l.e., exacth
- ?Zé}(:z—i*? i 2005 NSA Suite B. Al eriteris

4*X2*22*(X2”2+;‘;*X2*22+22A2)) 2010 Certicom SEC 2 v2. See our ev.
2010 OSCCA SM2.
= cswap (x2,x3,bit) satecurve

2011 ANSSI FRP256V1.
= cswap(z2,z3,bit)

2xz2" (p-2)




strass: Montgomery
romery ladder” .

1,1

-ange (maxnbits) ) :
)

x3,bit)

z3,bit)

2%23) "2,
3-z2%x3) "2)

2"2) 72,
X272+A*x2%z2+2272) )
x3,bit)

z3,bit)

Curve selection

How to defend yourself against
an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of the

What your chosen stan
No known attack will c
ECC user’s secret key f
( “Elliptic-curve discrete

Example of criterion in
Standard base point (z
has huge prime “order”
I.e., exactly £ different

All criteria are compute
See our evaluation site

safecurves.cr.yp. tc
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Curve selection

How to defend yourself against
an attacker armed with a mathematician:

1999 ANSI X9.62.

2000 IEEE P1363.

2000 Certicom SEC 2.
2000 NIST FIPS 186-2.
2001 ANSI X9.63.

2005 Brainpool.

2005 NSA Suite B.

2010 Certicom SEC 2 v2.
2010 OSCCA SM2.

2011 ANSSI FRP256V1.

You can pick any of these standard:

What your chosen standard achieve
No known attack will compute

ECC user’s secret key from public k
( “Elliptic-curve discrete-log problem

Example of criterion in all standard:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to



Curve selection You can pick any of these standards.

How to defend yourself against What your chosen standard achieves:
an attacker armed with a mathematician: No known attack will compute

1999 ANS| X9 62. ECC user's secret key from public key.

2000 |IEEE P1363. ( “Elliptic-curve discrete-log problem.”)

2000 Certicom SEC 2. Example of criterion in all standards:
2000 NIST FIPS 186-2. Standard base point (z, y)

2001 ANSI X9.63. has huge prime “order” /£,

2005 Brainpool. I.e., exactly £ different multiples.

2005 NSA Suite B.
2010 Certicom SEC 2 v2.
2010 OSCCA SM2.
2011 ANSSI FRP256V1.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to




tion

‘end yourself against
- armed with a mathematician:

X9.62.
P1363.

com SEC 2.
FIPS 186-2.
X9.63.

pool.

Suite B.

com SEC 2 v2.
_A SM2.

51 FRP256V1.

You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do eve

You pick tl

brainpool

i

standard b

This curve
with Edwa

So you che
in the Wel

You make
It's horrenc
but It's sec



against
a mathematician:

You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right

You pick the Brainpool
brainpoolP256t1: hu
y2 — 3 — 3z + somehi

standard base point.

This curve isn't compat
with Edwards or Montg
So you check and test «
in the Weierstrass form

You make it all constar
It's horrendously slow,
but I1t's secure.



Iclan:

You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.



You can pick any of these standards.

What your chosen standard achieves:
No known attack will compute

ECC user’s secret key from public key.
(“Elliptic-curve discrete-log problem.”)

Example of criterion in all standards:
Standard base point (z, y)

has huge prime “order” /£,

I.e., exactly £ different multiples.

All criteria are computer-verifiable.
See our evaluation site for scripts:

safecurves.cr.yp.to

You do everything right.

You pick the Brainpool curve

brainpoolP256t1: huge prime p,

2 = g3

standard base point.

— 3z + somehugenumber,

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.



ck any of these standards.

chosen standard achieves:
attack will compute

secret key from public key.
urve discrete-log problem.”)

f criterion in all standards:
ase point (z, y)

rime “order” £,

/ £ different multiples.

are computer-verifiable.
aluation site for scripts:
2S.Cr.yp.to

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it

The attack

/ __ 1025Db3

Z 1e86be

/ _ 12aceb
Yy = d123d5

You compt
using the \
You encryy
with a hasl



ase standards.

dard achieves:
ompute

rom public key.
-log problem.”)

all standards:
Y)
L

multiples.

r-verifiable.
for scripts:

)

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it's not. You’

The attacker sent you |
/ __ 1025b35abab9150d8677:

Z 1e86bec6cb6bac12053be
/| __ 12acebeeae9abbObca8e
Yy = d123d55£68100099b65a!

You computed “shared
using the Weierstrass fc
You encrypted data usi
with a hash of a(z', y')



ey.

")

You do everything right.

You pick the Brainpool curve
brainpoolP256t1: huge prime p,
y? = z3 — 3z + somehugenumber,

standard base point.

This curve isn't compatible

with Edwards or Montgomery.
So you check and test every case
in the Weierstrass formulas.

You make it all constant-time.
It's horrendously slow,
but I1t's secure.

Actually, it's not. You're screwed.

The attacker sent you (z’,y') with
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~ 1e86bec6cbbac120535e4134fea87831
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¥y = d123d55£68100099b65a99ac358e3a75 °

You computed “shared secret” a(z’
using the Weierstrass formulas.

You encrypted data using AES-GCN\
with a hash of a(z’,y') as a key.
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You encrypted data using AES-GCM
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Addition on Weierstrass curve
y2 :X3+34X+363

for x1 # xo, (x1,y1) + (X2, y2)
(x3, y3) with x3 = A% — x; — x
y3 = A(x1 — x3) — y1,

A= (y2 —y1)/(x2 — x1);

for y1 #0, (x1,y1) + (x1, 1) -
(x3, y3) with x3 = A2 — x1 — x
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it's a point on y2 =23 — 3z + 5
of order only 4999.
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> No ag here!

Why this matters: (z',y’) has order 4999.
a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
compares to the AES-GCM output,

learns your secret a mod 4999.

Attacker then tries again with

.’L‘I ___ 9bc001a0d2d5c43863aadb0£881df3bb and
~ af3abea8leedd2385e6525521aa8ble?

/| _ 0d124e9e94dcedeb2aale3bcac1852ct
¥y = ed28eb86039c0d8e0cfaadae703eacO7"’

a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”
to combine this information.
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a point of order 19559
on y2 = 3 — 3z + 211;
learns your secret a mod 19559.

Etc. Uses “Chinese remainder theorem”
to combine this information.

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)



Why this matters: (z',y’) has order 4999.

a(z',y') is determined by a mod 4999.
The attacker tries all 4999 possibilities,
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a point of order 19559
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learns your secret a mod 19559.
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to combine this information.

Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z, y).
Design protocols to compress

one coordinate down to 1 bit, or 0 bits!
Drastically limits possibilities

for attacker to choose points.
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Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
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Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z, ).
Design protocols to compress

one coordinate down to 1 bit, or O bits!
Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cof

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ £ is called the curve order.

Design DH protocols to multiply by
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but modifying B gives only two diff
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Traditional response to this security failure:
Blame the implementor.

“You should have checked that

the incoming (z’, ') was on the right curve
and had the right order.”

(And maybe paid patent fees to Certicom.)

But it's much better to
design the system without traps.

Never send uncompressed (z, y).
Design protocols to compress

one coordinate down to 1 bit, or 0 bits!
Drastically limits possibilities

for attacker to choose points.

Always multiply DH scalar by cofactor.

If the curve has ¢ - £ points
and the base point P has order £
then c is called the cofactor
and ¢ - £ is called the curve order.

Design DH protocols to multiply by c.
Always choose twist-secure curves.

Montgomery formulas use only A,

but modifying B gives only two different
curve orders. Require both of these orders
to be large primes times small cofactors.

DH protocols with all of these protections
are robust against
every common DH implementation error.
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and the base point P has order £
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Sage scripts to verify criteria for
ECDLP security and ECC security:

safecurves.cr.yp.to

Analysis of manipulability of various
curve-generation methods:

safecurves.cr.yp.to/badab5.html

Many computer-verified addition formulas:
hyperelliptic.org/EFD/

Python scripts for this talk:

ecchacks.cr.yp.to



