Let's Build a Quantum Computer!

31C3 29/12/2014

Andreas Dewes

Acknowledgements go to "Quantronics Group", CEA Saclay. R. Lauro, Y. Kubo, F. Ong, A. Palacios-Laloy, V. Schmitt PhD Advisors: Denis Vion, Patrice Bertet, Daniel Esteve

Motivation

quantum computers will

quantum computers will **never work** quantum computers will **change everything** Ŷ

Q

Outline

Quantum Computing

What is it & why do we want it

Quantum Algorithms

Cracking passwords with quantum computers

Building A Simple Quantum Processor Superconductors, Resonators, Microwaves

Recent Progress in Quantum Computing Architectures, Error Correction, Hybrid Systems

Why Quantum Computing?

Quantum physics cannot be simulated efficiently with a classical computer.¹⁾

A computer that **makes use of quantum mechanics** can do it.

It can also be faster for **some** other mathematical problems.

1) http://www.cs.berkeley.edu/~christos/classics/Feynman.pdf

Classical Computing

Bits

Bit Registers

Logic Gates

A problem: Password cracking

Launch Missile

Forgot your pasword?

A Password Checking Function

A Cracking Algorithm

- 1. Set register state to i = 00000...0
- 2. Calculate f(i)
- 3. If f(i)=1, return *i* as solution
- 4. If not, increment i by 1 and go to (2)

Time Complexity of our Algorithm

Quantum Computing

Quantum Bit / Qubit

Qubit \approx Two-Level Atom

Quantum Superposition

How to imagine superposition

http://en.wikipedia.org/wiki/Double-slit_experiment#mediaviewer/File:Doubleslit3Dspectrum.gif

Quantum Measurements

 $|\psi\rangle = \sqrt{a}|0\rangle + \sqrt{1-a} \cdot e^{i\varphi} |1\rangle$

Quantum Measurements

 $|\psi\rangle = |0\rangle$; probability = *a*

Quantum Measurements

 $|\psi\rangle = |1\rangle$; probability = *1-a*

QuBit Registers

QuBit Registers

Multi-Qubit Superpositions

Multi-Qubit Superpositions

 $N = 2^n$ states in superposition

$$0.5^{n/2}(|00...0\rangle + \cdots + |11...1\rangle)$$

Multi-Qubit Superpositions omitting normalizations

$|00 \dots 0\rangle + \dots + |11 \dots 1\rangle$

Quantum Gates

Quantum Entanglement

$\hat{f}(|01\rangle) = |01\rangle + |10\rangle$

Summary: Qubits

Quantum-mechanical two-level system

Can be in a **superposition** state $|0\rangle + |1\rangle$

A measurement will yield either 0 or 1 and **project** the qubit into the respective state

Can become entangled with other qubits

Back to business...

Launch Missile

Wrong password!

Quantum Searching our Password

But how we get the solution?

Efficiency of Grover Search (for 10 qubits)

≈ 25 iterations required

Time Complexity Revisited

Number Factorization: Shor Alg.

 $r = q \cdot s; q, s$ prime numbers

problem size – n (number of bits)

How to Build a Quantum Processor?

photo not CC-licensed

photo not CC-licensed

Ion Trap Quantum Processors

Superconducting Quantum Processors

...and many more technologies:

Nuclar magnetic resonance, photonic qubits, quantum dots, electrons on superfluid helium, Bose-Einstein condensates...

A Simple Two-Qubit Processor

Using superconducting qubits (Transmons - Wallraff et al., Nature 431 (2004)

put in dilution cryostat

Running Grover-Search for 2 Qubits

Single-Run Success Probability

Dewes et. al., PRB Rapid Comm 85 (2012)

Challenges

Decoherence

Environment measures and manipulates the qubit and destroys its quantum state.

Gate Fidelity & Qubit-Qubit Coupling

Difficult to reliably switch on & off qubit-qubit coupling with high precision for many qubits

And some more:

High-Fidelity state measurement, qubit reset, ...

Recent Trends in Superconducting Quantum Computing

Better Qubit Architectures

Better Qubits and Resonators

Quantum Error Correction

Hybrid Quantum Systems

(photos not included since not CC-BY licensed)

Moore's Law: Quantum Edition (for superconducting qubits)

Summary

Quantum computers are coming!

...but still there are many engineering challenges to overcome...

Bad News

Likely that governments and big corporations will be in control of QC in the short term.

Thanks!

More "quantum information":

Get in touch with me: ich@andreas-dewes.de // @japh44