Let's Build a Quantum Computer!

Andreas Dewes

Acknowledgements go to "Quantronics Group", CEA Saclay. R. Lauro, Y. Kubo, F. Ong, A. Palacios-Laloy, V. Schmitt PhD Advisors: Denis Vion, Patrice Bertet, Daniel Esteve

Motivation

quantum computers will
quantum computers will never work
quantum computers will change everything

Outline
Quantum Computing
What is it \& why do we want it

Quantum Algorithms
Cracking passwords with quantum computers

Building A Simple Quantum Processor
Superconductors, Resonators, Microwaves

Recent Progress in Quantum Computing
Architectures, Error Correction, Hybrid Systems

Why Quantum Computing?

Quantum physics cannot be simulated efficiently with a classical computer. ${ }^{11}$

A computer that makes use of quantum mechanics can do it.

It can also be faster for some other mathematical problems.

1) http://www.cs.berkeley.edu/~christos/classics/Feynman.pdf

Classical Computing

$$
\begin{array}{ll}
0 & 1 \\
\tau_{\text {m }}^{7} & \\
\hline
\end{array}
$$

Bit Registers

$$
\begin{aligned}
& n \text { bits }\left\{\begin{array}{l}
\ln _{A} \bullet-\ldots \\
\ln _{\mathrm{B}} \bullet-\ldots \\
\ln _{n} \bullet
\end{array}\right. \\
& \begin{array}{l}
N=2^{n} \text { states } \\
0 \ldots 00,0 \ldots 01, \ldots, 1 \ldots 11
\end{array}
\end{aligned}
$$

Logic Gates

Logic Gates

A problem: Password cracking

$* * * * * * * * * * * *$

A Password Checking Function

$$
f= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

$$
i, j \in\{00 \ldots 000,00 \ldots 001, \ldots, 11 \ldots 111\}
$$

A Cracking Algorithm

1. Set register state to $\boldsymbol{i}=\mathbf{0 0 0 0 0} . . . \mathbf{0}$
2. Calculate $f(i)$
3. If $f(i)=1$, return \boldsymbol{i} as solution
4. If not, increment i by $\boldsymbol{1}$ and go to (2)

Time Complexity of our Algorithm

Quantum Computing

Quantum Bit / Qubit

Qubit \approx Two-Level Atom

Quantum Superposition

How to imagine superposition

Quantum Measurements

Quantum Measurements

$|\psi\rangle=|0\rangle$; probability $=\boldsymbol{a}$

Quantum Measurements

$|\psi\rangle=|1\rangle$; probability $=\mathbf{1 - a}$

QuBit Registers

QuBit Registers

Multi-Qubit Superpositions

$$
\begin{aligned}
& 0.5^{1 / 2}(|0\rangle+|1\rangle) \\
& 0.5^{1 / 2}(|0\rangle+|1\rangle)
\end{aligned}
$$

$$
0.5^{1 / 2}(|0\rangle+|1\rangle)
$$

n times
$0.5^{n / 2} \xlongequal[(|0\rangle+|1\rangle) \ldots(|0\rangle+|1\rangle)]{\text { (... }}$

Multi-Qubit Superpositions

$$
\begin{aligned}
& 0.5^{1 / 2}(|0\rangle+|1\rangle) \\
& 0.5^{1 / 2}(|0\rangle+|1\rangle) \\
& 0.5^{1 / 2}(|0\rangle+|1\rangle)
\end{aligned}
$$

$N=2^{n}$ states in superposition
$0.5^{n / 2}(|00 \ldots 0\rangle+\cdots+|11 \ldots 1\rangle)$

Multi-Qubit Superpositions

 omitting normalizations$$
\begin{array}{ll}
|0\rangle+|1\rangle & 0 \\
|0\rangle+|1\rangle & \bullet \\
|0\rangle+|1\rangle & \vdots \\
\hline
\end{array}
$$

$$
|00 \ldots 0\rangle+\cdots+|11 \ldots 1\rangle
$$

Quantum Gates

Quantum Entanglement

Summary: Qubits

Quantum-mechanical two-level system

Can be in a superposition state $|\mathbf{0}\rangle+|\mathbf{1}\rangle$

A measurement will yield either $\mathbf{0}$ or $\mathbf{1}$ and project the qubit into the respective state

Can become entangled with other qubits

Back to business...

```
\(* * * * * * * * * * * *\)
```

Launch Missile
Wrong password!

Quantum Searching our Password

But how we get the solution?

Solution: Grover Algorithm

$$
\text { result }= \begin{cases}01 \ldots 101 & p \approx 1 \\ * * \cdots * * 0 & p \approx 0\end{cases}
$$

Efficiency of Grover Search

 (for 10 qubits)

Time Complexity Revisited

search space size $-N$

Number Factorization: Shor Alg.

 $r=q \cdot s ; q, s$ prime numbers

Shor algorithm $-\log (n)^{3}$
problem size - n (number of bits)

How to Build a Quantum Processor?

...and many more technologies:

Nuclar magnetic resonance, photonic qubits, quantum dots, electrons on superfluid helium, Bose-Einstein condensates...

A Simple Two-Qubit Processor

Using superconducting qubits (Transmons - Wallraff et al., Nature 431 (2004))

Running Grover-Search for 2 Qubits

Prepare superposition \quad Calculate $f_{j} \quad$ Apply Grover operator Readout

Single-Run Success Probability

Prepare superposition \quad Calculate $f_{j} \quad$ Apply Grover operator Readout

Challenges

Decoherence

Environment measures and manipulates the qubit and destroys its quantum state.

Gate Fidelity \& Qubit-Qubit Coupling

Difficult to reliably switch on \& off qubit-qubit coupling with high precision for many qubits

And some more:
High-Fidelity state measurement, qubit reset, ...

Recent Trends in Superconducting Quantum Computing

Better Qubit Architectures

Better Qubits and Resonators

Quantum Error Correction

Hybrid Quantum Systems
(photos not included since not CC-BY licensed)

Moore's Law: Quantum Edition (for superconducting qubits)

Superconducting Qubits:
Reported Coherence Time (T_{φ})

Summary

Quantum computers are coming!

...but still there are many engineering challenges to overcome...

Bad News

Likely that governments and big corporations will be in control of QC in the short term.

Thanks!

More "quantum information":
Diamonds are a quantum computer's best friend -
Tomorrow, 30.12 at $12: 45 \mathrm{~h}$ in Hall 6 by Nicolas Wöhrl

Get in touch with me: ich@andreas-dewes.de // @japh44

